Partially condensed DNA conformations observed by single molecule fluorescence microscopy

Philip Serwer, S. J. Hayes

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

To detect partially condensed conformations of a double-stranded DNA molecule, single molecule fluorescence microscopy is performed here. The single DNA molecules are ethidium stained, 670 kilobase pair bacteriophage G genomes that are observed both during and after expulsion from capsids. Expulsion occurs in an agarose gel. Just after expulsion, the entire G DNA molecule typically has a partially condensed conformation not previously described (called a balloon). A balloon subsequently extrudes a filamentous segment of DNA. The filamentous segment becomes gently elongated via diffusion into the network that forms the agarose gel. The elongated DNA molecule usually has bright spots that undergo both appearance/ disappearance and apparent motion. These spots are called dynamic spots. A dynamic spot is assumed to be the image of a zone of partially condensed DNA segments (globule). The positions of globules along an elongated DNA molecule 1) are restricted primarily to time-stable regions with comparatively high thermal motion-induced, micrometer-scale bending of the DNA molecule and 2) move within a given region on a time scale smaller than the time scale of recording. Less mobile globules are observed when either magnesium cation or ethanol is added before gel-embedding DNA molecules. These observations are explained by globules induced at equilibrium by a bending-dependent, inter-DNA segment force. Theory has previously predicted that globules are induced by electrostatic forces along an electrically charged polymer at equilibrium. The hypothesis is proposed that intracellular DNA globules assist action-at-a-distance during DNA metabolism.

Original languageEnglish (US)
Pages (from-to)3398-3408
Number of pages11
JournalBiophysical Journal
Volume81
Issue number6
StatePublished - 2001

Fingerprint

Nucleic Acid Conformation
Fluorescence Microscopy
DNA
Gels
Sepharose
Single Molecule Imaging
Capsid
Static Electricity
Bacteriophages
Magnesium
Cations
Polymers
Ethanol
Hot Temperature

ASJC Scopus subject areas

  • Biophysics

Cite this

Partially condensed DNA conformations observed by single molecule fluorescence microscopy. / Serwer, Philip; Hayes, S. J.

In: Biophysical Journal, Vol. 81, No. 6, 2001, p. 3398-3408.

Research output: Contribution to journalArticle

@article{2eace971635f4913a93b858110285d1f,
title = "Partially condensed DNA conformations observed by single molecule fluorescence microscopy",
abstract = "To detect partially condensed conformations of a double-stranded DNA molecule, single molecule fluorescence microscopy is performed here. The single DNA molecules are ethidium stained, 670 kilobase pair bacteriophage G genomes that are observed both during and after expulsion from capsids. Expulsion occurs in an agarose gel. Just after expulsion, the entire G DNA molecule typically has a partially condensed conformation not previously described (called a balloon). A balloon subsequently extrudes a filamentous segment of DNA. The filamentous segment becomes gently elongated via diffusion into the network that forms the agarose gel. The elongated DNA molecule usually has bright spots that undergo both appearance/ disappearance and apparent motion. These spots are called dynamic spots. A dynamic spot is assumed to be the image of a zone of partially condensed DNA segments (globule). The positions of globules along an elongated DNA molecule 1) are restricted primarily to time-stable regions with comparatively high thermal motion-induced, micrometer-scale bending of the DNA molecule and 2) move within a given region on a time scale smaller than the time scale of recording. Less mobile globules are observed when either magnesium cation or ethanol is added before gel-embedding DNA molecules. These observations are explained by globules induced at equilibrium by a bending-dependent, inter-DNA segment force. Theory has previously predicted that globules are induced by electrostatic forces along an electrically charged polymer at equilibrium. The hypothesis is proposed that intracellular DNA globules assist action-at-a-distance during DNA metabolism.",
author = "Philip Serwer and Hayes, {S. J.}",
year = "2001",
language = "English (US)",
volume = "81",
pages = "3398--3408",
journal = "Biophysical Journal",
issn = "0006-3495",
publisher = "Biophysical Society",
number = "6",

}

TY - JOUR

T1 - Partially condensed DNA conformations observed by single molecule fluorescence microscopy

AU - Serwer, Philip

AU - Hayes, S. J.

PY - 2001

Y1 - 2001

N2 - To detect partially condensed conformations of a double-stranded DNA molecule, single molecule fluorescence microscopy is performed here. The single DNA molecules are ethidium stained, 670 kilobase pair bacteriophage G genomes that are observed both during and after expulsion from capsids. Expulsion occurs in an agarose gel. Just after expulsion, the entire G DNA molecule typically has a partially condensed conformation not previously described (called a balloon). A balloon subsequently extrudes a filamentous segment of DNA. The filamentous segment becomes gently elongated via diffusion into the network that forms the agarose gel. The elongated DNA molecule usually has bright spots that undergo both appearance/ disappearance and apparent motion. These spots are called dynamic spots. A dynamic spot is assumed to be the image of a zone of partially condensed DNA segments (globule). The positions of globules along an elongated DNA molecule 1) are restricted primarily to time-stable regions with comparatively high thermal motion-induced, micrometer-scale bending of the DNA molecule and 2) move within a given region on a time scale smaller than the time scale of recording. Less mobile globules are observed when either magnesium cation or ethanol is added before gel-embedding DNA molecules. These observations are explained by globules induced at equilibrium by a bending-dependent, inter-DNA segment force. Theory has previously predicted that globules are induced by electrostatic forces along an electrically charged polymer at equilibrium. The hypothesis is proposed that intracellular DNA globules assist action-at-a-distance during DNA metabolism.

AB - To detect partially condensed conformations of a double-stranded DNA molecule, single molecule fluorescence microscopy is performed here. The single DNA molecules are ethidium stained, 670 kilobase pair bacteriophage G genomes that are observed both during and after expulsion from capsids. Expulsion occurs in an agarose gel. Just after expulsion, the entire G DNA molecule typically has a partially condensed conformation not previously described (called a balloon). A balloon subsequently extrudes a filamentous segment of DNA. The filamentous segment becomes gently elongated via diffusion into the network that forms the agarose gel. The elongated DNA molecule usually has bright spots that undergo both appearance/ disappearance and apparent motion. These spots are called dynamic spots. A dynamic spot is assumed to be the image of a zone of partially condensed DNA segments (globule). The positions of globules along an elongated DNA molecule 1) are restricted primarily to time-stable regions with comparatively high thermal motion-induced, micrometer-scale bending of the DNA molecule and 2) move within a given region on a time scale smaller than the time scale of recording. Less mobile globules are observed when either magnesium cation or ethanol is added before gel-embedding DNA molecules. These observations are explained by globules induced at equilibrium by a bending-dependent, inter-DNA segment force. Theory has previously predicted that globules are induced by electrostatic forces along an electrically charged polymer at equilibrium. The hypothesis is proposed that intracellular DNA globules assist action-at-a-distance during DNA metabolism.

UR - http://www.scopus.com/inward/record.url?scp=0035201419&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035201419&partnerID=8YFLogxK

M3 - Article

C2 - 11721002

AN - SCOPUS:0035201419

VL - 81

SP - 3398

EP - 3408

JO - Biophysical Journal

JF - Biophysical Journal

SN - 0006-3495

IS - 6

ER -