Abstract
Advanced prostate tumors usually metastasize to the lung, bone, and other vital tissues and are resistant to conventional therapy. Prostate apoptosis response-4 protein (Par-4) is a tumor suppressor that causes apoptosis in therapy-resistant prostate cancer cells by binding specifically to a receptor, Glucose-regulated protein-78 (GRP78), found only on the surface of cancer cells. 3-Arylquinolines or "arylquins" induce normal cells to release Par-4 from the intermediate filament protein, vimentin and promote Par-4 secretion that targets cancer cells in a paracrine manner. A structure-activity study identified arylquins that promote Par-4 secretion, and an evaluation of arylquin binding to the hERG potassium ion channel using a [3H]-dofetilide binding assay permitted the identification of structural features that separated this undesired activity from the desired Par-4 secretory activity. A binding study that relied on the natural fluorescence of arylquins and that used the purified rod domain of vimentin (residues 99-411) suggested that the mechanism behind Par-4 release involved arylquin binding to multiple sites in the rod domain.
Original language | English (US) |
---|---|
Pages (from-to) | 74-84 |
Number of pages | 11 |
Journal | Organic and Biomolecular Chemistry |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2016 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Physical and Theoretical Chemistry
- Organic Chemistry