Oviduct Infection and Hydrosalpinx in DBA1/j Mice Is Induced by Intracervical but Not Intravaginal Inoculation with Chlamydia muridarum

Lingli Tang, Hongbo Zhang, Lei Lei, Siqi Gong, Zhiguang Zhou, Joel Baseman, Guangming Zhong

Research output: Contribution to journalArticle

31 Scopus citations

Abstract

Intravaginal infection with C. muridarum in mice often results in hydrosalpinx similar to that found in women urogenitally infected with C. trachomatis, making the C. muridarum lower genital tract infection murine model suitable for studying C. trachomatis pathogenesis. To our surprise, DBA1/j mice were highly resistant to hydrosalpinx following an intravaginal infection with C. muridarum although these mice were as susceptible to lower genital tract infection as other mouse strains. A significantly lower level of C. muridarum organisms was recovered from the oviduct of DBA1/j mice, correlating the resistance to hydrosalpinx with reduced ascension of C. muridarum to the oviduct. The DBA1/j resistance to hydrosalpinx was effectively overcome by intracervical inoculation with C. muridarum. The intracervically inoculated DBA1/j mice developed severe hydrosalpinx with the highest levels of live C. muridarum organisms recovered from uterine tissue on day 3 and oviduct tissue on day 7 post inoculation while in intravaginally inoculated DBA1/j mice, the peak of live organism recovery from uterine tissue was delayed to day 7 with no rise in the amount of live organisms recovered from the oviduct. These observations have not only validated the correlation between hydrosalpinx and live organism invasion in the oviduct but also demonstrated that the intracervical inoculation, by promoting rapid chlamydial replication in the uterine epithelial cells and ascension to the oviduct of DBA1/j mice, may be used for further understanding chlamydial pathogenic mechanisms. The above findings also suggest that strategies aimed at reducing tubal infection may be most effective in blocking tubal pathology.

Original languageEnglish (US)
Article numbere71649
JournalPloS one
Volume8
Issue number8
DOIs
StatePublished - Aug 5 2013

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this