Overexpression of melatonin membrane receptors increases calcium-binding proteins and protects VSC4.1 motoneurons from glutamate toxicity through multiple mechanisms

Arabinda Das, Gerald Wallace IV, Russel J. Reiter, Abhay K. Varma, Swapan K. Ray, Naren L. Banik

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Melatonin has shown particular promise as a neuroprotective agent to prevent motoneuron death in animal models of both amyotrophic lateral sclerosis (ALS) and spinal cord injuries (SCI). However, an understanding of the roles of endogenous melatonin receptors including MT1, MT2, and orphan G-protein receptor 50 (GPR50) in neuroprotection is lacking. To address this deficiency, we utilized plasmids for transfection and overexpression of individual melatonin receptors in the ventral spinal cord 4.1 (VSC4.1) motoneuron cell line. Receptor-mediated cytoprotection following exposure to glutamate at a toxic level (25 lm) was determined by assessing cell viability, apoptosis, and intracellular free Ca2+ levels. Our findings indicate a novel role for MT1 and MT2 for increasing expression of the calcium-binding proteins calbindin D28K and parvalbumin. Increased levels of calbindin D28K and parvalbumin in VSC4.1 cells overexpressing MT1 and MT2 were associated with cytoprotective effects including inhibition of proapoptotic signaling, downregulation of inflammatory factors, and expression of prosurvival markers. Interestingly, the neuroprotective effects conferred by overexpression of MT1 and/or MT2 were also associated with increases in the estrogen receptor b (ERb): estrogen receptor a (ERa) ratio and upregulation of angiogenic factors. GPR50 did not exhibit cytoprotective effects. To further confirm the involvement of the melatonin receptors, we silenced both MT1 and MT2 in VSC4.1 cells using RNA interference technology. Knockdown of MT1 and MT2 led to an increase in glutamate toxicity, which was only partially reversed by melatonin treatment. Taken together, our findings suggest that the neuroprotection against glutamate toxicity exhibited by melatonin may depend on MT1 and MT2 but not GPR50.

Original languageEnglish (US)
Pages (from-to)58-68
Number of pages11
JournalJournal of pineal research
Volume54
Issue number1
DOIs
StatePublished - Jan 2013
Externally publishedYes

Keywords

  • Apoptosis
  • Calbindin D28K
  • Calpain
  • G-protein receptor 50
  • Glutamate toxicity
  • Melatonin receptors
  • Parvalbumin
  • Ventral spinal cord 4.1

ASJC Scopus subject areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'Overexpression of melatonin membrane receptors increases calcium-binding proteins and protects VSC4.1 motoneurons from glutamate toxicity through multiple mechanisms'. Together they form a unique fingerprint.

Cite this