Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies

Barbara D. Boyan, S. Lossdörfer, L. Wang, G. Zhao, C. H. Lohmann, D. L. Cochran, Z. Schwartz

Research output: Contribution to journalArticlepeer-review

243 Scopus citations


Osteoblasts respond to microarchitectural features of their substrate. On smooth surfaces (tissue culture plastic, tissue culture glass, and titanium), the cells attach and proliferate but they exhibit relatively low expression of differentiation markers in monolayer cultures, even when confluent. When grown on microrough Ti surfaces with an average roughness (Ra) of 4-7 μm, proliferation is reduced but differentiation is enhanced and in some cases, is synergistic with the effects of surface microtopography. In addition, cells on microrough Ti substrates form hydroxyapatite in a manner that is more typical of bone than do cells cultured on smooth surfaces. Osteoblasts also respond to growth factors and cytokines in a surface-dependent manner. On rougher surfaces, the effects of regulatory factors like 1α,25(OH)2D3 or 17β-estradiol are enhanced. The response to the surface is mediated by integrins, which signal to the cell through many of the same mechanisms used by growth factors and hormones. Studies using PEG-modified surfaces indicate that increased differentiation may be related to altered attachment to the surface. When osteoblasts are grown on surfaces with chemistries or microarchitectures that reduce cell attachment and proliferation, and enhance differentiation, the cells tend to increase production of factors like TGF-β1 that promote osteogenesis while decreasing osteoclastic activity. Thus, on microrough Ti surface, osteoblasts create a microenvironment conducive to new bone formation.

Original languageEnglish (US)
Pages (from-to)22-27
Number of pages6
JournalEuropean Cells and Materials
StatePublished - 2003


  • Microtopography
  • Osteoblasts
  • Osteogenesis
  • Osteoprotegerin (OPG)
  • Surfaces
  • Titanium

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Biomaterials
  • Biomedical Engineering
  • Cell Biology


Dive into the research topics of 'Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies'. Together they form a unique fingerprint.

Cite this