On the genetic architecture of cortical folding and brain volume in primates

Jeffrey Rogers, Peter Kochunov, Karl Zilles, Wendy Shelledy, Jack Lancaster, Paul Thompson, Ravindranath Duggirala, John C Blangero, Peter T. Fox, David C. Glahn

Research output: Contribution to journalArticlepeer-review

119 Scopus citations

Abstract

Understanding the evolutionary forces that produced the human brain is a central problem in neuroscience and human biology. Comparisons across primate species show that both brain volume and gyrification (the degree of folding in the cerebral cortex) have progressively increased during primate evolution and there is a strong positive correlation between these two traits across primate species. The human brain is exceptional among primates in both total volume and gyrification, and therefore understanding the genetic mechanisms influencing variation in these traits will improve our understanding of a landmark feature of our species. Here we show that individual variation in gyrification is significantly heritable in both humans and an Old World monkey (baboons, Papio hamadryas). Furthermore, contrary to expectations based on the positive phenotypic correlation across species, the genetic correlation between cerebral volume and gyrification within both humans and baboons is estimated as negative. These results suggest that the positive relationship between cerebral volume and cortical folding across species cannot be explained by one set of selective pressures or genetic changes. Our data suggest that one set of selective pressures favored the progressive increase in brain volume documented in the primate fossil record, and that a second independent selective process, possibly related to parturition and neonatal brain size, may have favored brains with progressively greater cortical folding. Without a second separate selective pressure, natural selection favoring increased brain volume would be expected to produce less folded, more lissencephalic brains. These results provide initial evidence for the heritability of gyrification, and possibly a new perspective on the evolutionary mechanisms underlying long-term changes in the nonhuman primate and human brain.

Original languageEnglish (US)
Pages (from-to)1103-1108
Number of pages6
JournalNeuroImage
Volume53
Issue number3
DOIs
StatePublished - Nov 2010

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'On the genetic architecture of cortical folding and brain volume in primates'. Together they form a unique fingerprint.

Cite this