Ocular perfusion pressure and choroidal blood flow in the rabbit

J. W. Kiel, W. A J Van Heuven

Research output: Contribution to journalArticlepeer-review

195 Scopus citations


Purpose. To compare choroidal blood pressure versus flow relationships obtained by three different methods of changing the ocular perfusion pressure. Methods. Experiments were performed in pentobarbital-anesthetized rabbits with occluders on the aorta and inferior vena cava to control mean arterial pressure (MAP). The central car artery was cannulated to measure MAP. Two 23-gauge needles were inserted through the pars plans into the vitreous: one connected to a saline-filled syringe to vary the ocular volume and the other to a pressure transducer to measure intraocular pressure (IOP). Choroidal perfusion was measured by laser-Doppler flowmetry with the probe in the vitreous over the posterior pole. In group 1 (n = 15), the MAP was varied while holding the IOP at 10, 15, 20, 25 and 30 mm Hg. In group 2 (n = 19), the IOP was increased while holding the MAP at 80, 70, 60, 50, 40, 30 and 20 mm Hg. In group 3 (n = 21), the MAP was varied without controlling the IOP. Results. Group I baseline choroidal flows were similar at the five IOPs. When the flow was plotted against MAP, the curves diverged anti extrapolated to intersect the pressure axis when the MAP equaled the set IOP. Group 2 baseline flows were similar at MAPs greater than 40 mm Hg. When the flow was plotted against the IOP, the curves diverged and intersected the pressure axis when the lOP equaled the MAP. In both groups, plotting the flow against the perfusion pressure (i.e., MAP minus IOP) collapsed the data points into single curves. Choroidal autoregulation occurred in all three groups; however, the low end of the autoregulatory, perfusion pressure range was ≃50 mm Hg in group 1, ≃40 mm Hg in group 2, and ≃30 mm Hg in group 3. Conclusions. The results show that the effective choroidal perfusion pressure gradient equals the MAP minus the IOP, and that choroidal autoregulation is most effective when the MAP varies and lOP is not controlled.

Original languageEnglish (US)
Pages (from-to)579-585
Number of pages7
JournalInvestigative Ophthalmology and Visual Science
Issue number3
StatePublished - 1995

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Ocular perfusion pressure and choroidal blood flow in the rabbit'. Together they form a unique fingerprint.

Cite this