Abstract
We investigated the mechanism of H2O2 activation of the Ca2+-regulated NADPH oxidase NOX5. H2O2 induced a transient, dose-dependent increase in superoxide production in K562 cells expressing NOX5. Confocal studies demonstrated that the initial calcium influx generated by H2O2 is amplified by a feedback mechanism involving NOX5-dependent superoxide production and H2O2. H2O2 NOX5 activation was inhibited by extracellular Ca2+ chelators, a pharmacological inhibitor of c-Abl, and overexpression of kinase-dead c-Abl. Transfected kinase-active GFP-c-Abl colocalized with vesicular sites of superoxide production in a Ca2+-dependent manner. In contrast to H2O2, the Ca2+ ionophore ionomycin induced NOX5 activity independent of c-Abl. Immunoprecipitation of cell lysates revealed that active GFP-c-Abl formed oligomers with endogenous c-Abl and that phosphorylation of both proteins was increased by H2O2 treatment. Furthermore, H2O2-induced NOX5 activity correlated with increased localization of c-Abl to the membrane fraction, and NOX5 proteins could be coimmunoprecipitated with GFP-Abl proteins. Our data demonstrate for the first time that NOX5 is activated by c-Abl through a Ca2+-mediated, redox-dependent signaling pathway and suggest a functional association between NOX5 NADPH oxidase and c-Abl.
Original language | English (US) |
---|---|
Pages (from-to) | 868-881 |
Number of pages | 14 |
Journal | Free Radical Biology and Medicine |
Volume | 44 |
Issue number | 5 |
DOIs | |
State | Published - Mar 1 2008 |
Keywords
- Calcium
- Free radicals
- Hydrogen peroxide
- NADPH oxidase
- NOX5
- Signaling, c-Abl
- Superoxide
ASJC Scopus subject areas
- Biochemistry
- Physiology (medical)