Nonmonotonic alterations in the fluorescence anisotropy of polar head group labeled fluorophores during the lamellar to hexagonal phase transition of phospholipids

Xianlin Han, R. W. Gross

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

The temperature dependence of the fluorescence anisotropy of polar head group labeled fluorophores (i.e., N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)dipalmitoyl-L- alpha-phosphatidylethanolamine or N-(lissamine rhodamine B sulfonyl)dipalmitoyl-L-alpha-phosphatidylethanol- amine) incorporated into multiple phosphatidylethanolamine molecular species was parabolic, possessing minima (dr/dT = 0) that precisely correlated with the respective lamellar (L alpha) to hexagonal (HII) phase transition temperature of each species. The parabolic alterations in the thermotropic behavior of these fluorophores were due to increased motional constraints in the polar head group region during heating (dr/dT greater than 0), because significant alterations in the fluorescence lifetimes of these probes during the phase transition did not occur. The sensitivity inherent in identification of peak minima was exploited to determine the lamellar to hexagonal phase transition temperatures of several homogeneous molecular species of plasmenylethanolamine (e.g., the transition temperature of 1-O-(Z)-hexadec-1'-enyl-2-octadec-9'- enoyl-sn-glycero-3-phosphoethanolamine was 28 degrees C). Experiments using ethanolamine glycerophospholipids containing either an ester or a vinyl ether linkage at the sn-1 position demonstrated that introduction of the vinyl ether constituent increased the propensity of these species to assume the hexagonal phase. Collectively, these results identify and substantiate a new technique for the characterization of the lamellar to hexagonal phase transition in phospholipids that requires only small amounts of phospholipids present in dilute membrane suspensions.

Original languageEnglish (US)
Pages (from-to)309-316
Number of pages8
JournalBiophysical Journal
Volume63
Issue number2
DOIs
StatePublished - Jan 1 1992
Externally publishedYes

Fingerprint

Fluorescence Polarization
Phase Transition
Transition Temperature
Phospholipids
Glycerophospholipids
Ethanolamine
Heating
Amines
Suspensions
Esters
Fluorescence
Temperature
Membranes
vinyl ether

ASJC Scopus subject areas

  • Biophysics

Cite this

@article{28f86b3848064c23af5a9054e63267b8,
title = "Nonmonotonic alterations in the fluorescence anisotropy of polar head group labeled fluorophores during the lamellar to hexagonal phase transition of phospholipids",
abstract = "The temperature dependence of the fluorescence anisotropy of polar head group labeled fluorophores (i.e., N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)dipalmitoyl-L- alpha-phosphatidylethanolamine or N-(lissamine rhodamine B sulfonyl)dipalmitoyl-L-alpha-phosphatidylethanol- amine) incorporated into multiple phosphatidylethanolamine molecular species was parabolic, possessing minima (dr/dT = 0) that precisely correlated with the respective lamellar (L alpha) to hexagonal (HII) phase transition temperature of each species. The parabolic alterations in the thermotropic behavior of these fluorophores were due to increased motional constraints in the polar head group region during heating (dr/dT greater than 0), because significant alterations in the fluorescence lifetimes of these probes during the phase transition did not occur. The sensitivity inherent in identification of peak minima was exploited to determine the lamellar to hexagonal phase transition temperatures of several homogeneous molecular species of plasmenylethanolamine (e.g., the transition temperature of 1-O-(Z)-hexadec-1'-enyl-2-octadec-9'- enoyl-sn-glycero-3-phosphoethanolamine was 28 degrees C). Experiments using ethanolamine glycerophospholipids containing either an ester or a vinyl ether linkage at the sn-1 position demonstrated that introduction of the vinyl ether constituent increased the propensity of these species to assume the hexagonal phase. Collectively, these results identify and substantiate a new technique for the characterization of the lamellar to hexagonal phase transition in phospholipids that requires only small amounts of phospholipids present in dilute membrane suspensions.",
author = "Xianlin Han and Gross, {R. W.}",
year = "1992",
month = "1",
day = "1",
doi = "10.1016/S0006-3495(92)81616-8",
language = "English (US)",
volume = "63",
pages = "309--316",
journal = "Biophysical Journal",
issn = "0006-3495",
publisher = "Biophysical Society",
number = "2",

}

TY - JOUR

T1 - Nonmonotonic alterations in the fluorescence anisotropy of polar head group labeled fluorophores during the lamellar to hexagonal phase transition of phospholipids

AU - Han, Xianlin

AU - Gross, R. W.

PY - 1992/1/1

Y1 - 1992/1/1

N2 - The temperature dependence of the fluorescence anisotropy of polar head group labeled fluorophores (i.e., N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)dipalmitoyl-L- alpha-phosphatidylethanolamine or N-(lissamine rhodamine B sulfonyl)dipalmitoyl-L-alpha-phosphatidylethanol- amine) incorporated into multiple phosphatidylethanolamine molecular species was parabolic, possessing minima (dr/dT = 0) that precisely correlated with the respective lamellar (L alpha) to hexagonal (HII) phase transition temperature of each species. The parabolic alterations in the thermotropic behavior of these fluorophores were due to increased motional constraints in the polar head group region during heating (dr/dT greater than 0), because significant alterations in the fluorescence lifetimes of these probes during the phase transition did not occur. The sensitivity inherent in identification of peak minima was exploited to determine the lamellar to hexagonal phase transition temperatures of several homogeneous molecular species of plasmenylethanolamine (e.g., the transition temperature of 1-O-(Z)-hexadec-1'-enyl-2-octadec-9'- enoyl-sn-glycero-3-phosphoethanolamine was 28 degrees C). Experiments using ethanolamine glycerophospholipids containing either an ester or a vinyl ether linkage at the sn-1 position demonstrated that introduction of the vinyl ether constituent increased the propensity of these species to assume the hexagonal phase. Collectively, these results identify and substantiate a new technique for the characterization of the lamellar to hexagonal phase transition in phospholipids that requires only small amounts of phospholipids present in dilute membrane suspensions.

AB - The temperature dependence of the fluorescence anisotropy of polar head group labeled fluorophores (i.e., N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)dipalmitoyl-L- alpha-phosphatidylethanolamine or N-(lissamine rhodamine B sulfonyl)dipalmitoyl-L-alpha-phosphatidylethanol- amine) incorporated into multiple phosphatidylethanolamine molecular species was parabolic, possessing minima (dr/dT = 0) that precisely correlated with the respective lamellar (L alpha) to hexagonal (HII) phase transition temperature of each species. The parabolic alterations in the thermotropic behavior of these fluorophores were due to increased motional constraints in the polar head group region during heating (dr/dT greater than 0), because significant alterations in the fluorescence lifetimes of these probes during the phase transition did not occur. The sensitivity inherent in identification of peak minima was exploited to determine the lamellar to hexagonal phase transition temperatures of several homogeneous molecular species of plasmenylethanolamine (e.g., the transition temperature of 1-O-(Z)-hexadec-1'-enyl-2-octadec-9'- enoyl-sn-glycero-3-phosphoethanolamine was 28 degrees C). Experiments using ethanolamine glycerophospholipids containing either an ester or a vinyl ether linkage at the sn-1 position demonstrated that introduction of the vinyl ether constituent increased the propensity of these species to assume the hexagonal phase. Collectively, these results identify and substantiate a new technique for the characterization of the lamellar to hexagonal phase transition in phospholipids that requires only small amounts of phospholipids present in dilute membrane suspensions.

UR - http://www.scopus.com/inward/record.url?scp=0026739495&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026739495&partnerID=8YFLogxK

U2 - 10.1016/S0006-3495(92)81616-8

DO - 10.1016/S0006-3495(92)81616-8

M3 - Article

VL - 63

SP - 309

EP - 316

JO - Biophysical Journal

JF - Biophysical Journal

SN - 0006-3495

IS - 2

ER -