Native extracellular matrix preserves mesenchymal stem cell "stemness" and differentiation potential under serum-free culture conditions

Rubie Rakian, Travis J. Block, Shannan M. Johnson, Milos Marinkovic, Junjie Wu, Qiuxia Dai, David D. Dean, Xiao Dong Chen

Research output: Contribution to journalArticlepeer-review

63 Scopus citations


Introduction: Bone marrow-derived mesenchymal stem cells (BM-MSCs) for clinical use should not be grown in media containing fetal bovine serum (FBS), because of serum-related concerns over biosafety and batch-to-batch variability. Previously, we described the preparation and use of a cell-free native extracellular matrix (ECM) made by bone marrow cells (BM-ECM) which preserves stem cell properties and enhances proliferation. Here, we compare colony-forming ability and differentiation of MSCs cultured on BM-ECM with a commercially available matrix (CELLstart™) and tissue culture plastic (TCP) under serum-free conditions. Methods: Primary MSCs from freshly isolated bone marrow-derived mononuclear cells or passaged MSCs (P1) were grown in serum-containing (SCM) or serum-free (SFM) media on BM-ECM, CELLstart™, or TCP substrates. Proliferation, cell composition (phenotype), colony-forming unit replication, and bone morphogenetic protein-2 (BMP-2) responsiveness were compared among cells maintained on the three substrates. Results: Proliferation of primary BM-MSCs was significantly higher in SCM than SFM, irrespectively of culture substrate, suggesting that the expansion of these cells requires SCM. In contrast, passaged cells cultured on BM-ECM or CELLstart™ in SFM proliferated to nearly the same extent as cells in SCM. However, morphologically, those on BM-ECM were smaller and more aligned, slender, and long. Cells grown for 7 days on BM-ECM in SFM were 20-40 % more positive for MSC surface markers than cells cultured on CELLstart™. Cells cultured on TCP contained the smallest number of cells positive for MSC markers. MSC colony-forming ability in SFM, as measured by CFU-fibroblasts, was increased 10-, 9-, and 2-fold when P1 cells were cultured on BM-ECM, CELLstart™, and TCP, respectively. Significantly, CFU-adipocyte and -osteoblast replication of cells grown on BM-ECM was dramatically increased over those on CELLstart™ (2X) and TCP (4-7X). BM-MSCs, cultured in SFM and treated with BMP-2, retained their differentiation capacity better on BM-ECM than on either of the other two substrates. Conclusions: Our findings indicate that BM-ECM provides a unique microenvironment that supports the colony-forming ability of MSCs in SFM and preserves their stem cell properties. The establishment of a robust culture system, combining native tissue-specific ECM and SFM, provides an avenue for preparing significant numbers of potent MSCs for cell-based therapies in patients.

Original languageEnglish (US)
Article number235
JournalStem Cell Research and Therapy
Issue number1
StatePublished - Dec 1 2015


  • Extracellular matrix
  • Mesenchymal stem cells
  • Serum-free media
  • Stem cell expansion

ASJC Scopus subject areas

  • Molecular Medicine
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Medicine (miscellaneous)
  • Cell Biology


Dive into the research topics of 'Native extracellular matrix preserves mesenchymal stem cell "stemness" and differentiation potential under serum-free culture conditions'. Together they form a unique fingerprint.

Cite this