TY - JOUR
T1 - Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy
T2 - A multidisciplinary study of peritoneal carcinomatosis
AU - Nowacki, Maciej
AU - Wisniewski, Marek
AU - Werengowska-Ciecwierz, Karolina
AU - Roszek, Katarzyna
AU - Czarnecka, Joanna
AU - Lakomska, I.
AU - Kloskowski, Tomasz
AU - Tyloch, Dominik
AU - Debski, Robert
AU - Pietkun, Katarzyna
AU - Pokrywczynska, Marta
AU - Grzanka, Dariusz
AU - Czajkowski, Rafal
AU - Drewa, Gerard
AU - Jundzill, A.
AU - Agyin, Joseph K.
AU - Habib, Samy L.
AU - Terzyk, Artur P.
AU - Drewa, Tomasz
PY - 2015
Y1 - 2015
N2 - In general, detection of peritoneal carcinomatosis (PC) occurs at the late stage when there is no treatment option. In the present study, we designed novel drug delivery systems that are functionalized with anti-CD133 antibodies. The C1, C2 and C3 complexes with cisplatin were introduced into nanotubes, either physically or chemically. The complexes were reacted with anti-CD133 antibody to form the labeled product of A0-o-CX-chem-CD133. Cytotoxicity screening of all the complexes was performed on CHO cells. Data showed that both C2 and C3 Pt-complexes are more cytotoxic than C1. Flow-cytometry analysis showed that nanotubes conjugated to CD133 antibody have the ability to target cells expressing the CD133 antigen which is responsible for the emergence of resistance to chemotherapy and disease recurrence. The shortest survival rate was observed in the control mice group (K3) where no hyperthermic intraperitoneal chemotherapy procedures were used. On the other hand, the longest median survival rate was observed in the group treated with A0-o-C1-chem-CD133. In summary, we designed a novel drug delivery system based on carbon nanotubes loaded with Pt-prodrugs and functionalized with anti-CD133 antibodies. Our data demonstrates the effectiveness of the new drug delivery system and provides a novel therapeutic modality in the treatment of melanoma.
AB - In general, detection of peritoneal carcinomatosis (PC) occurs at the late stage when there is no treatment option. In the present study, we designed novel drug delivery systems that are functionalized with anti-CD133 antibodies. The C1, C2 and C3 complexes with cisplatin were introduced into nanotubes, either physically or chemically. The complexes were reacted with anti-CD133 antibody to form the labeled product of A0-o-CX-chem-CD133. Cytotoxicity screening of all the complexes was performed on CHO cells. Data showed that both C2 and C3 Pt-complexes are more cytotoxic than C1. Flow-cytometry analysis showed that nanotubes conjugated to CD133 antibody have the ability to target cells expressing the CD133 antigen which is responsible for the emergence of resistance to chemotherapy and disease recurrence. The shortest survival rate was observed in the control mice group (K3) where no hyperthermic intraperitoneal chemotherapy procedures were used. On the other hand, the longest median survival rate was observed in the group treated with A0-o-C1-chem-CD133. In summary, we designed a novel drug delivery system based on carbon nanotubes loaded with Pt-prodrugs and functionalized with anti-CD133 antibodies. Our data demonstrates the effectiveness of the new drug delivery system and provides a novel therapeutic modality in the treatment of melanoma.
KW - Carcinomatosis
KW - Hyperthermic intraperitoneal chemotherapy
KW - Intraperitoneal perfusion and nanovehicles
KW - Palliative
UR - http://www.scopus.com/inward/record.url?scp=84941241927&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84941241927&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.4309
DO - 10.18632/oncotarget.4309
M3 - Article
C2 - 26254295
AN - SCOPUS:84941241927
SN - 1949-2553
VL - 6
SP - 22776
EP - 22798
JO - Oncotarget
JF - Oncotarget
IS - 26
ER -