Abstract
Current therapeutic strategies are insufficient for suppressing stent-induced restenosis. Here, branched gold nanoparticles (BGNP)-coated self-expandable metallic stents (SEMSs) were developed for a local heat-induced suppression of stent-related tissue hyperplasia. Our polydopamine (PDA) coating on SEMS allowed BGNP crystal growth on the surface of SEMSs. The prepared BGNP-coated SEMS showed effective local heating under near-infrared laser irradiation. The effectiveness of BGNP-coated SEMSs for suppressing stent-related tissue hyperplasia was demonstrated in a rat esophageal model (n = 52). BGNP-coated SEMS placement under fluoroscopic guidance was technically successful in all rats. The placed BGNP-coated SEMS in rat esophagus achieved three different local heat dose ranges (50, 65, and 80 °C) under fluoroscopic image-guided local irradiation. Follow-up endoscopic examination readily monitored the local heating and observed significantly decreased tissue hyperplasia at 4 weeks of local heat treatments (50 and 65 °C). Finally, Western blot, histology, immunohistochemistry (HSP70, αSMA, and TUNEL), and immunofluorescence (Ki67 and BrdU) analyses along with the statistical analysis confirmed that optimized BGNP-coated SEMS-mediated local heat treatments inducing the expression of anti-inflammatory HSP70 effectively suppresses tissue hyperplasia after stent placement in the esophagus. Our local heating with nanofunctionalized stents represents a promising new approach for suppressing stent-related tissue hyperplasia.
Original language | English (US) |
---|---|
Pages (from-to) | 29357-29366 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 10 |
Issue number | 35 |
DOIs | |
State | Published - Sep 5 2018 |
Externally published | Yes |
Keywords
- gold nanoparticles
- local heat therapy
- nanofunctionalization
- self-expandable metallic stent
- tissue hyperplasia
ASJC Scopus subject areas
- Materials Science(all)