Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis

Settimio Pacelli, Francisca Acosta, Aparna R. Chakravarti, Saheli G. Samanta, Jonathan Whitlow, Saman Modaresi, Rafeeq P.H. Ahmed, Johnson Rajasingh, Arghya Paul

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. Statement of Significance One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network, therefore, providing a longer therapeutic effect. Our strategy demonstrates the efficacy of using NDs as an essential component for the design of a novel injectable nanocomposite system with improved release capabilities.

Original languageEnglish (US)
Pages (from-to)479-491
Number of pages13
JournalActa Biomaterialia
Volume58
DOIs
StatePublished - Aug 2017
Externally publishedYes

Keywords

  • Bioactive molecules
  • Injectable hydrogel
  • Nanocomposite hydrogel
  • Nanomedicine
  • Sustained release

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis'. Together they form a unique fingerprint.

Cite this