TY - JOUR
T1 - Myeloperoxidase-mediated platelet release reaction
AU - Clark, R. A.
AU - Klebanoff, S. J.
PY - 1979
Y1 - 1979
N2 - The ability of the neutrophil myeloperoxidase-hydrogen peroxide-halide system to induce the release of human platelet constituents was examined. Both lytic and nonlytic effects on platelets were assessed by comparison of the simultaneously measured release of a dense-granule marker, [3H]serotonin, and a cytoplasmic marker, [14C]adenine. Incubation of platelets with H2O2 alone (20 μM H2O2 for 10 min) resulted in a small, although significant, release of both serotonin and adenine, suggesting some platelet lysis. Substantial release of these markers was observed only with increased H2O2 concentrations (>0.1 mM) or prolonged incubation (1-2 h). Serotonin release by H2O2 was markedly enhanced by the addition of myeloperoxidase and a halide. Under these conditions, there was a predominance of release of serotonin (50%) vs. adenine (13%), suggesting, in part, a nonlytic mechanism. Serotonin release by the complete peroxidase system was rapid, reaching maximal levels in 2-5 min, and was active at H2O2 concentrations as low as 10 μM. It was blocked by agents which inhibit peroxidase (azide, cyanide), degrade H2O2 (catalase), chelate Mg2+ (EDTA, but not EGTA), or inhibit platelet metabolic activity (dinitrophenol, deoxyglucose). These results suggest that the myeloperoxidase system initiates the release of platelet constituents primarily by a nonlytic process analogous to the platelet release reaction. Because components of the peroxidase system (myeloperoxidase, H2O2) are secreted by activated neutrophils, the reactions described here may have implications for neutrophil-platelet interaction in sites of thrombus formation.
AB - The ability of the neutrophil myeloperoxidase-hydrogen peroxide-halide system to induce the release of human platelet constituents was examined. Both lytic and nonlytic effects on platelets were assessed by comparison of the simultaneously measured release of a dense-granule marker, [3H]serotonin, and a cytoplasmic marker, [14C]adenine. Incubation of platelets with H2O2 alone (20 μM H2O2 for 10 min) resulted in a small, although significant, release of both serotonin and adenine, suggesting some platelet lysis. Substantial release of these markers was observed only with increased H2O2 concentrations (>0.1 mM) or prolonged incubation (1-2 h). Serotonin release by H2O2 was markedly enhanced by the addition of myeloperoxidase and a halide. Under these conditions, there was a predominance of release of serotonin (50%) vs. adenine (13%), suggesting, in part, a nonlytic mechanism. Serotonin release by the complete peroxidase system was rapid, reaching maximal levels in 2-5 min, and was active at H2O2 concentrations as low as 10 μM. It was blocked by agents which inhibit peroxidase (azide, cyanide), degrade H2O2 (catalase), chelate Mg2+ (EDTA, but not EGTA), or inhibit platelet metabolic activity (dinitrophenol, deoxyglucose). These results suggest that the myeloperoxidase system initiates the release of platelet constituents primarily by a nonlytic process analogous to the platelet release reaction. Because components of the peroxidase system (myeloperoxidase, H2O2) are secreted by activated neutrophils, the reactions described here may have implications for neutrophil-platelet interaction in sites of thrombus formation.
UR - http://www.scopus.com/inward/record.url?scp=0018403593&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0018403593&partnerID=8YFLogxK
U2 - 10.1172/JCI109287
DO - 10.1172/JCI109287
M3 - Article
C2 - 219031
AN - SCOPUS:0018403593
SN - 0021-9738
VL - 63
SP - 177
EP - 183
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 2
ER -