Mutations of Human DopamineTransporter at Tyrosine88, Aspartic Acid206, and Histidine547 Influence Basal and HIV-1 Tat‐inhibited Dopamine Transport

Pamela M. Quizon, Yaxia Yuan, Yike Zhu, Yi Zhou, Matthew J. Strauss, Wei Lun Sun, Chang Guo Zhan, Jun Zhu

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

HIV-1 transactivator of transcription (Tat) has a great impact on the development of HIV-1 associated neurocognitive disorders through disrupting dopamine transmission. This study determined the mutational effects of human dopamine transporter (hDAT) on basal and Tat-induced inhibition of dopamine transport. Compared to wild-type hDAT, the maximal velocity (Vmax) of [3H]dopamine uptake was decreased in D381L and Y88F/D206L/H547A, increased in D206L/H547A, and unaltered in D206L. Recombinant TatR1 − 86 inhibited dopamine uptake in wild-type hDAT, which was attenuated in either DAT mutants (D206L, D206L/H547A, and Y88F/D206L/H547A) or mutated TatR1 − 86 (K19A and C22G), demonstrating perturbed Tat-DAT interaction. Mutational effects of hDAT on the transporter conformation were evidenced by attenuation of zinc-induced increased [3H]WIN35,428 binding in D206L/H547A and Y88F/D206A/H547A and enhanced basal MPP+ efflux in D206L/H547A. H547A-induced outward-open transport conformational state was further validated by enhanced accessibility to MTSET ([2-(trimethylammonium)ethyl]-methanethiosulfonate) of an inserted cysteine (I159C) on a hDAT background. Furthermore, H547A displayed an increase in palmitoylation inhibitor-induced inhibition of dopamine uptake relative to wide-type hDAT, indicating a change in basal palmitoylation in H547A. These results demonstrate that Y88F, D206L, and H547A attenuate Tat inhibition while preserving DA uptake, providing insights into identifying targets for improving DAT-mediated dopaminergic dysregulation. Graphical Abstract: HIV-1 Tat inhibits dopamine uptake through human dopamine transporter (hDAT) on the presynaptic terminal through a direct allosteric interaction. Key hDAT residues D-H547, D-Y88, and D-D206 are predicted to be involved in the HIV-1 Tat-DAT binding. Mutating these residues attenuates this inhibitory effect by disrupting the Tat-hDAT interaction[Figure not available: see fulltext.].

Original languageEnglish (US)
Pages (from-to)854-869
Number of pages16
JournalJournal of Neuroimmune Pharmacology
Volume16
Issue number4
DOIs
StatePublished - Dec 2021
Externally publishedYes

Keywords

  • Computational modeling
  • Dopamine transporter
  • HIV-1 Tat
  • Mutation
  • Uptake

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Immunology and Allergy
  • Immunology
  • Pharmacology

Fingerprint

Dive into the research topics of 'Mutations of Human DopamineTransporter at Tyrosine88, Aspartic Acid206, and Histidine547 Influence Basal and HIV-1 Tat‐inhibited Dopamine Transport'. Together they form a unique fingerprint.

Cite this