Abstract
The NZM2410-derived Sle2 lupus susceptibility locus induces an abnormal B-cell differentiation, which most prominently leads to the expansion of autoreactive B1a cells. We have mapped the expansion of B1a cells to three Sle2 sub-loci, Sle2a, Sle2b and Sle2c. Sle2 also enhances the breach of B-cell tolerance to nuclear antigens in the 56R anti-DNA immunoglobulin transgenic (Tg) model. This study used the Sle2 sub-congenic strains to map the activation of 56R Tg B cells. Sle2c strongly sustained the breach of tolerance and the activation of anti-DNA B cells. The production of Tg-encoded anti-DNA antibodies was more modest in Sle2a-expressing mice, but Sle2a was responsible for the recruitment for Tg B cells to the marginal zone, a phenotype that has been found for 56R Tg B cells in mice expressing the whole Sle2 interval. In addition, Sle2a promoted the production of endogenously encoded anti-DNA antibodies. Overall, this study showed that at least two Sle2 genes are involved in the activation of anti-DNA B cells, and excluded more than two-thirds of the Sle2 interval from contributing to this phenotype. This constitutes an important step toward the identification of novel genes that have a critical role in B-cell tolerance.
Original language | English (US) |
---|---|
Pages (from-to) | 199-207 |
Number of pages | 9 |
Journal | Genes and Immunity |
Volume | 12 |
Issue number | 3 |
DOIs | |
State | Published - Apr 2011 |
Externally published | Yes |
Keywords
- B cells
- autoantibodies
- genetics
- lupus
- marginal zone
ASJC Scopus subject areas
- Immunology
- Genetics
- Genetics(clinical)