Multi-speed sedimentation velocity simulations with UltraScan-III

Tayler L. Williams, Gary E. Gorbet, Borries Demeler

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Recent developments in the UltraScan-III software make it possible to model multi-speed analytical ultracentrifugation sedimentation velocity experiments using finite-element solutions of the Lamm equation. Using simulated data, we demonstrate here how these innovations can be used to enhance the resolution of sedimentation velocity experiments when compared to single-speed experiments. Using heterogeneous systems covering as much as five orders of magnitude in molar mass and fivefold in anisotropy, we compare results from runs performed at multiple speeds to those obtained from single-speed experiments, fitted individually and analyzed globally over multiple speeds, and quantify resolution for sample heterogeneous in size and anisotropy. We also provide guidance on the design of multi-speed experiments and offer a program that can be used to deduce optimal spacing of rotor speeds and speed step durations when a few parameters from the experiment can be estimated. These include the meniscus position, the sedimentation coefficient of the largest species in a mixture, and a solute distribution. Our results show that errors observed in the determination of hydrodynamic parameters for system with great heterogeneity are markedly reduced when multi-speed analysis is employed.

Original languageEnglish (US)
Pages (from-to)815-823
Number of pages9
JournalEuropean Biophysics Journal
Volume47
Issue number7
DOIs
StatePublished - Oct 1 2018

Keywords

  • Analytical ultracentrifugation
  • Finite element modeling
  • Multi-speed analysis

ASJC Scopus subject areas

  • Biophysics

Fingerprint Dive into the research topics of 'Multi-speed sedimentation velocity simulations with UltraScan-III'. Together they form a unique fingerprint.

  • Cite this