TY - JOUR
T1 - Mossy fiber synaptic reorganization induced by kindling
T2 - Time course of development, progression, and permanence
AU - Cavazos, J. E.
AU - Golarai, G.
AU - Sutula, T. P.
PY - 1991
Y1 - 1991
N2 - Recent studies have revealed that mossy fiber axons of granule cells in the dentate gyrus undergo reorganization of their terminal projections in both animal models of epilepsy and human epilepsy. This synaptic reorganization has been demonstrated by the Timm method, a histochemical technique that selectively labels synaptic terminals of mossy fibers because of their high zinc content. It has been generally presumed that the reorganization of the terminal projections of the mossy fiber pathway is a consequence of axonal sprouting and synaptogenesis by mossy fibers. To evaluate this possibility further, the time course for development of Timm granules, which correspond ultrastructurally to mossy fiber synaptic terminals, was examined in the supragranular layer of the dentate gyrus at the initiation of kindling stimulation with an improved scoring method for assessment of alterations in Timm histochemistry. The progression and permanence of this histological alteration were similarly evaluated during the behavioral and electrographic evolution of kindling evoked by perforant path, amygdala, or olfactory bulb stimulation. Mossy fiber synaptic terminals developed in the supragranular region of the dentate gyrus by 4 d after initiation of kindling stimulation in a time course compatible with axon sprouting. The induced alterations in the terminal projections of the mossy fiber pathway progressed with the evolution of behavioral kindled seizures, became permanent in parallel with the development of longlasting susceptibility to evoked seizures, and were observed as long as 8 months after the last evoked kindled seizure. The results demonstrated a strong correlation between mossy fiber synaptic reorganization and the development, progression, and permanence of the kindling phenomenon.
AB - Recent studies have revealed that mossy fiber axons of granule cells in the dentate gyrus undergo reorganization of their terminal projections in both animal models of epilepsy and human epilepsy. This synaptic reorganization has been demonstrated by the Timm method, a histochemical technique that selectively labels synaptic terminals of mossy fibers because of their high zinc content. It has been generally presumed that the reorganization of the terminal projections of the mossy fiber pathway is a consequence of axonal sprouting and synaptogenesis by mossy fibers. To evaluate this possibility further, the time course for development of Timm granules, which correspond ultrastructurally to mossy fiber synaptic terminals, was examined in the supragranular layer of the dentate gyrus at the initiation of kindling stimulation with an improved scoring method for assessment of alterations in Timm histochemistry. The progression and permanence of this histological alteration were similarly evaluated during the behavioral and electrographic evolution of kindling evoked by perforant path, amygdala, or olfactory bulb stimulation. Mossy fiber synaptic terminals developed in the supragranular region of the dentate gyrus by 4 d after initiation of kindling stimulation in a time course compatible with axon sprouting. The induced alterations in the terminal projections of the mossy fiber pathway progressed with the evolution of behavioral kindled seizures, became permanent in parallel with the development of longlasting susceptibility to evoked seizures, and were observed as long as 8 months after the last evoked kindled seizure. The results demonstrated a strong correlation between mossy fiber synaptic reorganization and the development, progression, and permanence of the kindling phenomenon.
UR - https://www.scopus.com/pages/publications/0025787898
UR - https://www.scopus.com/inward/citedby.url?scp=0025787898&partnerID=8YFLogxK
U2 - 10.1523/jneurosci.11-09-02795.1991
DO - 10.1523/jneurosci.11-09-02795.1991
M3 - Article
C2 - 1880549
AN - SCOPUS:0025787898
SN - 0270-6474
VL - 11
SP - 2795
EP - 2803
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 9
ER -