MondoA drives muscle lipid accumulation and insulin resistance

Byungyong Ahn, Shibiao Wan, Natasha Jaiswal, Rick B. Vega, Donald E. Ayer, Paul M. Titchenell, Xianlin Han, Kyoung Jae Won, Daniel P. Kelly

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Obesity-related insulin resistance is associated with intramyocellular lipid accumulation in skeletal muscle. We hypothesized that contrary to current dogma, this linkage is related to an upstream mechanism that coordinately regulates both processes. We demonstrate that the muscle-enriched transcription factor MondoA is glucose/fructose responsive in human skeletal myotubes and directs the transcription of genes in cellular metabolic pathways involved in diversion of energy substrate from a catabolic fate into nutrient storage pathways, including fatty acid desaturation and elongation, triacylglyceride (TAG) biosynthesis, glycogen storage, and hexosamine biosynthesis. MondoA also reduces myocyte glucose uptake by suppressing insulin signaling. Mice with muscle-specific MondoA deficiency were partially protected from insulin resistance and muscle TAG accumulation in the context of diet-induced obesity. These results identify MondoA as a nutrient-regulated transcription factor that under normal physiological conditions serves a dynamic checkpoint function to prevent excess energy substrate flux into muscle catabolic pathways when myocyte nutrient balance is positive. However, in conditions of chronic caloric excess, this mechanism becomes persistently activated, leading to progressive myocyte lipid storage and insulin resistance.

Original languageEnglish (US)
Article numbere129119
JournalJCI Insight
Volume4
Issue number15
DOIs
StatePublished - Aug 8 2019

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'MondoA drives muscle lipid accumulation and insulin resistance'. Together they form a unique fingerprint.

Cite this