Molecular mechanisms of membrane curvature sensing by a disordered protein

Wade F. Zeno, Ajay S. Thatte, Liping Wang, Wilton T. Snead, Eileen M. Lafer, Jeanne C. Stachowiak

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

The ability of proteins to sense membrane curvature is essential for the initiation and assembly of curved membrane structures. Established mechanisms of curvature sensing rely on proteins with specific structural features. In contrast, it has recently been discovered that intrinsically disordered proteins, which lack a defined three-dimensional fold, can also be potent sensors of membrane curvature. How can an unstructured protein sense the structure of the membrane surface? Many disordered proteins that associate with membranes have two key physical features: a high degree of conformational entropy and a high net negative charge. Binding of such proteins to membrane surfaces results simultaneously in a decrease in conformational entropy and an increase in electrostatic repulsion by anionic lipids. Here we show that each of these effects gives rise to a distinct mechanism of curvature sensing. Specifically, as the curvature of the membrane increases, the steric hindrance between the disordered protein and membrane is reduced, leading to an increase in chain entropy. At the same time, increasing membrane curvature increases the average separation between anionic amino acids and lipids, creating an electrostatic preference for curved membranes. Using quantitative imaging of membrane vesicles, our results demonstrate that long disordered amino acid chains with low net charge sense curvature predominately through the entropic mechanism. In contrast, shorter, more highly charged amino acid chains rely largely on the electrostatic mechanism. These findings provide a roadmap for predicting and testing the curvature sensitivity of the large and diverse set of disordered proteins that function at cellular membranes.

Original languageEnglish (US)
Pages (from-to)10361-10371
Number of pages11
JournalJournal of the American Chemical Society
Volume141
Issue number26
DOIs
StatePublished - 2019

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Molecular mechanisms of membrane curvature sensing by a disordered protein'. Together they form a unique fingerprint.

  • Cite this

    Zeno, W. F., Thatte, A. S., Wang, L., Snead, W. T., Lafer, E. M., & Stachowiak, J. C. (2019). Molecular mechanisms of membrane curvature sensing by a disordered protein. Journal of the American Chemical Society, 141(26), 10361-10371. https://doi.org/10.1021/jacs.9b03927