TY - JOUR
T1 - Molecular landscape of arthrofibrosis
T2 - Microarray and bioinformatic analysis of the temporal expression of 380 genes during contracture genesis
AU - Morrey, Mark E.
AU - Abdel, Matthew P.
AU - Riester, Scott M.
AU - Dudakovic, Amel
AU - van Wijnen, Andre J.
AU - Morrey, Bernard F.
AU - Sanchez-Sotelo, Joaquin
PY - 2017/4/30
Y1 - 2017/4/30
N2 - Purpose Inflammatory changes are suspected in the pathophysiology of arthrofibrosis formation and require early molecular examination. Here, we assessed the hypothesis that early inflammatory genes are related to arthrofibrosis by ascertaining gene expression during the early stages of contracture genesis in an animal model. Methods Joint trauma was incited surgically in a cohort of rabbits (n = 36) knees followed by immobilization in a model of contracture. Six groups of 6 rabbits were sacrificed at multiple time points (0, 6, 12, 24, 72 h and 2 weeks). Microarray expression and RT-qPCR profiling were performed to determine genes that are significantly up or downregulated. Bioinformatic analysis was carried out to understand which biological programs and functional groups of genes are modulated in arthrofibrosis. Results Gene expression profiling revealed a large number biologically relevant genes (> 100) that are either upregulated or downregulated by at least a 1.5 fold (log2) during the first two weeks after joint injury during contracture development. Gene ontology analysis identified molecular pathways and programs that act during the course of fibrosis and joint contracture. Our main finding is that the development of contractures occur concomitant with modulation of genes mediating inflammatory responses, ECM remodeling and the epithelial-to-mesenchymal transition. Conclusion The genesis of joint contracture reflects an imbalance between pro- and anti-fibrotic expression. Our study indicates that inflammatory genes may be involved in the process of contracture genesis and initiated at relatively early stages. Our findings also may inform clinical practice in the future by suggesting potential therapeutic targets in preventing the long-term development of arthrofibrosis.
AB - Purpose Inflammatory changes are suspected in the pathophysiology of arthrofibrosis formation and require early molecular examination. Here, we assessed the hypothesis that early inflammatory genes are related to arthrofibrosis by ascertaining gene expression during the early stages of contracture genesis in an animal model. Methods Joint trauma was incited surgically in a cohort of rabbits (n = 36) knees followed by immobilization in a model of contracture. Six groups of 6 rabbits were sacrificed at multiple time points (0, 6, 12, 24, 72 h and 2 weeks). Microarray expression and RT-qPCR profiling were performed to determine genes that are significantly up or downregulated. Bioinformatic analysis was carried out to understand which biological programs and functional groups of genes are modulated in arthrofibrosis. Results Gene expression profiling revealed a large number biologically relevant genes (> 100) that are either upregulated or downregulated by at least a 1.5 fold (log2) during the first two weeks after joint injury during contracture development. Gene ontology analysis identified molecular pathways and programs that act during the course of fibrosis and joint contracture. Our main finding is that the development of contractures occur concomitant with modulation of genes mediating inflammatory responses, ECM remodeling and the epithelial-to-mesenchymal transition. Conclusion The genesis of joint contracture reflects an imbalance between pro- and anti-fibrotic expression. Our study indicates that inflammatory genes may be involved in the process of contracture genesis and initiated at relatively early stages. Our findings also may inform clinical practice in the future by suggesting potential therapeutic targets in preventing the long-term development of arthrofibrosis.
KW - Animal model
KW - Arthrofibrosis
KW - Contracture
KW - Genes
KW - Microarray
UR - http://www.scopus.com/inward/record.url?scp=85014175339&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014175339&partnerID=8YFLogxK
U2 - 10.1016/j.gene.2017.01.025
DO - 10.1016/j.gene.2017.01.025
M3 - Article
C2 - 28167142
AN - SCOPUS:85014175339
VL - 610
SP - 15
EP - 23
JO - Gene
JF - Gene
SN - 0378-1119
ER -