Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary

Julia A. Elvin, Changning Yan, Pei Wang, Katsuhiko Nishimori, Martin M. Matzuk

Research output: Contribution to journalArticle

355 Citations (Scopus)

Abstract

Growth differentiation factor-9 (GDF-9), a secreted member of the transforming growth factor-β superfamily, is expressed at high levels in the mammalian oocyte beginning at the type 3a primary follicle stage. We have previously demonstrated that GDF-9-deficient female mice are infertile because of an early block in folliculogenesis at the type 3b primary follicle stage. To address the molecular defects that result from the absence of GDF-9, we have analyzed the expression of several important ovarian marker genes. The major findings of our studies are as follows: 1) There are no detectable signals around GDF-9-deficient follicles for several theca cell layer markers [i.e. 17α-hydroxylase, LH receptor (LHR), and c-kit, the receptor for kit ligand]. This demonstrates that in the absence of GDF-9, the follicles are incompetent to emit a signal that recruits theca cell precursors to surround the follicle; 2) The primary follicles of GDF-9-deficient mice demonstrate an up-regulation of kit ligand and inhibin-α. This suggests that these two important secreted growth factors, expressed in the granulosa cells, may be directly regulated in a paracrine fashion by GDF-9. Upregulation of kit ligand, via signaling through c-kit on the oocyte, may be directly involved in the increased size of GDF-9-deficient oocytes and the eventual demise of the oocyte; 3) After loss of the oocyte, the cells of the GDF-9-deficient follicles remain in a steroidogenic cluster that histologically resembles small corpora lutea. However, at the molecular level, these cells are positive for both luteal markers (e.g. LHR and P-450 side chain cleavage) and nonluteal markers (e.g. inhibin α and P-450 aromatase). This demonstrates that initially the presence of the oocyte prevents the expression of luteinized markers, but that the absence of GDF-9 at an early timepoint alters the differentiation program of the granulosa cells; and 4) As demonstrated by staining with either proliferating cell nuclear antigen (PCNA) or Ki-67 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) labeling, the granulosa cells of GDF-9-deficient type 3b primary follicles fail to proliferate but also fail to undergo cell death. This suggests that granulosa cells of type 3b follicles require GDF-9 for continued growth and also to become competent to undergo apoptosis, possibly through a differentiation event. Thus, these studies have enlightened us as to the paracrine roles of GDF-9 as well as the normal steps of granulosa cell and theca cell growth and differentiation within ovarian follicles.

Original languageEnglish (US)
Pages (from-to)1018-1034
Number of pages17
JournalMolecular Endocrinology
Volume13
Issue number6
DOIs
StatePublished - Jan 1 1999
Externally publishedYes

Fingerprint

Growth Differentiation Factor 9
Ovary
Granulosa Cells
Oocytes
Theca Cells
Stem Cell Factor
LH Receptors
Cell Differentiation
Inhibins
Corpus Luteum
Up-Regulation
Proto-Oncogene Proteins c-kit
Aromatase
Ovarian Follicle
DNA Nucleotidylexotransferase
Proliferating Cell Nuclear Antigen
Transforming Growth Factors
Growth
Mixed Function Oxygenases

ASJC Scopus subject areas

  • Molecular Biology
  • Endocrinology

Cite this

Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. / Elvin, Julia A.; Yan, Changning; Wang, Pei; Nishimori, Katsuhiko; Matzuk, Martin M.

In: Molecular Endocrinology, Vol. 13, No. 6, 01.01.1999, p. 1018-1034.

Research output: Contribution to journalArticle

Elvin, Julia A. ; Yan, Changning ; Wang, Pei ; Nishimori, Katsuhiko ; Matzuk, Martin M. / Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. In: Molecular Endocrinology. 1999 ; Vol. 13, No. 6. pp. 1018-1034.
@article{30f89b7df3124e8ebe7f5277242ed7cf,
title = "Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary",
abstract = "Growth differentiation factor-9 (GDF-9), a secreted member of the transforming growth factor-β superfamily, is expressed at high levels in the mammalian oocyte beginning at the type 3a primary follicle stage. We have previously demonstrated that GDF-9-deficient female mice are infertile because of an early block in folliculogenesis at the type 3b primary follicle stage. To address the molecular defects that result from the absence of GDF-9, we have analyzed the expression of several important ovarian marker genes. The major findings of our studies are as follows: 1) There are no detectable signals around GDF-9-deficient follicles for several theca cell layer markers [i.e. 17α-hydroxylase, LH receptor (LHR), and c-kit, the receptor for kit ligand]. This demonstrates that in the absence of GDF-9, the follicles are incompetent to emit a signal that recruits theca cell precursors to surround the follicle; 2) The primary follicles of GDF-9-deficient mice demonstrate an up-regulation of kit ligand and inhibin-α. This suggests that these two important secreted growth factors, expressed in the granulosa cells, may be directly regulated in a paracrine fashion by GDF-9. Upregulation of kit ligand, via signaling through c-kit on the oocyte, may be directly involved in the increased size of GDF-9-deficient oocytes and the eventual demise of the oocyte; 3) After loss of the oocyte, the cells of the GDF-9-deficient follicles remain in a steroidogenic cluster that histologically resembles small corpora lutea. However, at the molecular level, these cells are positive for both luteal markers (e.g. LHR and P-450 side chain cleavage) and nonluteal markers (e.g. inhibin α and P-450 aromatase). This demonstrates that initially the presence of the oocyte prevents the expression of luteinized markers, but that the absence of GDF-9 at an early timepoint alters the differentiation program of the granulosa cells; and 4) As demonstrated by staining with either proliferating cell nuclear antigen (PCNA) or Ki-67 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) labeling, the granulosa cells of GDF-9-deficient type 3b primary follicles fail to proliferate but also fail to undergo cell death. This suggests that granulosa cells of type 3b follicles require GDF-9 for continued growth and also to become competent to undergo apoptosis, possibly through a differentiation event. Thus, these studies have enlightened us as to the paracrine roles of GDF-9 as well as the normal steps of granulosa cell and theca cell growth and differentiation within ovarian follicles.",
author = "Elvin, {Julia A.} and Changning Yan and Pei Wang and Katsuhiko Nishimori and Matzuk, {Martin M.}",
year = "1999",
month = "1",
day = "1",
doi = "10.1210/mend.13.6.0309",
language = "English (US)",
volume = "13",
pages = "1018--1034",
journal = "Molecular Endocrinology",
issn = "0888-8809",
publisher = "The Endocrine Society",
number = "6",

}

TY - JOUR

T1 - Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary

AU - Elvin, Julia A.

AU - Yan, Changning

AU - Wang, Pei

AU - Nishimori, Katsuhiko

AU - Matzuk, Martin M.

PY - 1999/1/1

Y1 - 1999/1/1

N2 - Growth differentiation factor-9 (GDF-9), a secreted member of the transforming growth factor-β superfamily, is expressed at high levels in the mammalian oocyte beginning at the type 3a primary follicle stage. We have previously demonstrated that GDF-9-deficient female mice are infertile because of an early block in folliculogenesis at the type 3b primary follicle stage. To address the molecular defects that result from the absence of GDF-9, we have analyzed the expression of several important ovarian marker genes. The major findings of our studies are as follows: 1) There are no detectable signals around GDF-9-deficient follicles for several theca cell layer markers [i.e. 17α-hydroxylase, LH receptor (LHR), and c-kit, the receptor for kit ligand]. This demonstrates that in the absence of GDF-9, the follicles are incompetent to emit a signal that recruits theca cell precursors to surround the follicle; 2) The primary follicles of GDF-9-deficient mice demonstrate an up-regulation of kit ligand and inhibin-α. This suggests that these two important secreted growth factors, expressed in the granulosa cells, may be directly regulated in a paracrine fashion by GDF-9. Upregulation of kit ligand, via signaling through c-kit on the oocyte, may be directly involved in the increased size of GDF-9-deficient oocytes and the eventual demise of the oocyte; 3) After loss of the oocyte, the cells of the GDF-9-deficient follicles remain in a steroidogenic cluster that histologically resembles small corpora lutea. However, at the molecular level, these cells are positive for both luteal markers (e.g. LHR and P-450 side chain cleavage) and nonluteal markers (e.g. inhibin α and P-450 aromatase). This demonstrates that initially the presence of the oocyte prevents the expression of luteinized markers, but that the absence of GDF-9 at an early timepoint alters the differentiation program of the granulosa cells; and 4) As demonstrated by staining with either proliferating cell nuclear antigen (PCNA) or Ki-67 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) labeling, the granulosa cells of GDF-9-deficient type 3b primary follicles fail to proliferate but also fail to undergo cell death. This suggests that granulosa cells of type 3b follicles require GDF-9 for continued growth and also to become competent to undergo apoptosis, possibly through a differentiation event. Thus, these studies have enlightened us as to the paracrine roles of GDF-9 as well as the normal steps of granulosa cell and theca cell growth and differentiation within ovarian follicles.

AB - Growth differentiation factor-9 (GDF-9), a secreted member of the transforming growth factor-β superfamily, is expressed at high levels in the mammalian oocyte beginning at the type 3a primary follicle stage. We have previously demonstrated that GDF-9-deficient female mice are infertile because of an early block in folliculogenesis at the type 3b primary follicle stage. To address the molecular defects that result from the absence of GDF-9, we have analyzed the expression of several important ovarian marker genes. The major findings of our studies are as follows: 1) There are no detectable signals around GDF-9-deficient follicles for several theca cell layer markers [i.e. 17α-hydroxylase, LH receptor (LHR), and c-kit, the receptor for kit ligand]. This demonstrates that in the absence of GDF-9, the follicles are incompetent to emit a signal that recruits theca cell precursors to surround the follicle; 2) The primary follicles of GDF-9-deficient mice demonstrate an up-regulation of kit ligand and inhibin-α. This suggests that these two important secreted growth factors, expressed in the granulosa cells, may be directly regulated in a paracrine fashion by GDF-9. Upregulation of kit ligand, via signaling through c-kit on the oocyte, may be directly involved in the increased size of GDF-9-deficient oocytes and the eventual demise of the oocyte; 3) After loss of the oocyte, the cells of the GDF-9-deficient follicles remain in a steroidogenic cluster that histologically resembles small corpora lutea. However, at the molecular level, these cells are positive for both luteal markers (e.g. LHR and P-450 side chain cleavage) and nonluteal markers (e.g. inhibin α and P-450 aromatase). This demonstrates that initially the presence of the oocyte prevents the expression of luteinized markers, but that the absence of GDF-9 at an early timepoint alters the differentiation program of the granulosa cells; and 4) As demonstrated by staining with either proliferating cell nuclear antigen (PCNA) or Ki-67 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) labeling, the granulosa cells of GDF-9-deficient type 3b primary follicles fail to proliferate but also fail to undergo cell death. This suggests that granulosa cells of type 3b follicles require GDF-9 for continued growth and also to become competent to undergo apoptosis, possibly through a differentiation event. Thus, these studies have enlightened us as to the paracrine roles of GDF-9 as well as the normal steps of granulosa cell and theca cell growth and differentiation within ovarian follicles.

UR - http://www.scopus.com/inward/record.url?scp=0033305058&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033305058&partnerID=8YFLogxK

U2 - 10.1210/mend.13.6.0309

DO - 10.1210/mend.13.6.0309

M3 - Article

VL - 13

SP - 1018

EP - 1034

JO - Molecular Endocrinology

JF - Molecular Endocrinology

SN - 0888-8809

IS - 6

ER -