Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption

Catarina M. Alves, Y. Yang, D. L. Carnes, J. L. Ong, V. L. Sylvia, D. D. Dean, C. M. Agrawal, R. L. Reis

Research output: Contribution to journalArticlepeer-review

104 Scopus citations

Abstract

The effect of oxygen-based radio frequency glow discharge (rfGD) on the surface of different starch-based biomaterials (SBB) and the influence of proteins adsorption on modulating bone-cells behavior was studied. Bovine serum albumin, fibronectin and vitronectin were used in single and complex protein systems. RfGD-treated surfaces showed to increase in hydrophilicity and surface energy when compared to non-modified SBB. Biodegradable polymeric blends of cornstarch with cellulose acetate (SCA; 50/50 wt%), ethylene vinyl alcohol (SEVA-C; 50/50 wt%) and polycaprolactone (SPCL; 30/70 wt%) were studied. SCA and SCA reinforced with 10% hydroxyapatite (HA) showed the highest degree of modification as result of the rfGD treatment. Protein and control solutions were used to incubate with the characterized SBB and, following this, MG63 osteoblast-like osteosarcoma cells were seeded over the surfaces. Cell adhesion and proliferation onto SCA was found to be enhanced for non-treated surfaces and on SCA+10%HA no alteration was brought up by the plasma modification. Onto SCA surfaces, BSA, FN and VN single solutions improved cell adhesion, and this same effect was found upscaled for ternary systems. In addition, plasma treated SEVA-C directed an increase in both adhesion and proliferation comparing to non-treated surfaces. Even though adhesion onto treated and untreated SPCL was quite similar, plasma modification clearly promoted MG63 cells proliferation. Regarding MG63 cells morphology it was shown that onto SEVA-C surfaces the variation of cell shape was primarily defined by the protein system, while onto SPCL it was mainly affected by the plasma treatment.

Original languageEnglish (US)
Pages (from-to)307-315
Number of pages9
JournalBiomaterials
Volume28
Issue number2
DOIs
StatePublished - Jan 2007

Keywords

  • Cell adhesion and proliferation
  • Oxygen-based rfGD
  • Protein adsorption
  • Starch-based materials

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Ceramics and Composites
  • Biomaterials
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption'. Together they form a unique fingerprint.

Cite this