TY - JOUR
T1 - MMP-9 reinforces radiation-induced delayed invasion and metastasis of neuroblastoma cells through second-signaling positive feedback with NFκB via both ERK and IKK activation
AU - Somasundaram, Dinesh Babu
AU - Aravindan, Sheeja
AU - Major, Ryan
AU - Natarajan, Mohan
AU - Aravindan, Natarajan
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature B.V.
PY - 2023/6
Y1 - 2023/6
N2 - Neuroblastoma (NB) progression is branded with hematogenous metastasis and frequent relapses. Despite intensive multimodal clinical therapy, outcomes for patients with progressive disease remain poor, with negligible long-term survival. Therefore, understanding the acquired molecular rearrangements in NB cells with therapy pressure and developing improved therapeutic strategies is a critical need to improve the outcomes for high-risk NB patients. We investigated the rearrangement of MMP9 in NB with therapy pressure, and unveiled the signaling that facilitates NB evolution. Radiation-treatment (RT) significantly increased MMP9 expression/activity, and the induced enzyme activity was persistently maintained across NB cell lines. Furthermore, RT-triggered NFκB transcriptional activity and this RT-induced NFκB were required/adequate for MMP9 maintenance. RT-triggered NFκB-dependent MMP9 actuated a second-signaling feedback to NFκB, facilitating a NFκB-MMP9-NFκB positive feedback cycle (PFC). Critically, MMP9-NFκB feedback is mediated by MMP9-dependent activation of IKKβ and ERK phosphotransferase activity. Beyond its tumor invasion/metastasis function, PFC-dependent MMP9 lessens RT-induced apoptosis and favors survival pathway through the activation of NFκB signaling. In addition, PFC-dependent MMP9 regulates 19 critical molecular determinants that play a pivotal role in tumor evolution. Interestingly, seven of 19 genes possess NFκB-binding sites, demonstrating that MMP9 regulates these molecules by activating NFκB. Collectively, these data suggest that RT-triggered NFκB-dependent MMP9 actuates feedback to NFκB though IKKβ- and ERK1/2-dependent IκBα phosphorylation. This RT-triggered PFC prompts MMP9-dependent survival advantage, tumor growth, and dissemination. Targeting therapy-pressure-driven PFC and/or selective inhibition of MMP9 maintenance could serve as promising therapeutic strategies for treatment of progressive NB.
AB - Neuroblastoma (NB) progression is branded with hematogenous metastasis and frequent relapses. Despite intensive multimodal clinical therapy, outcomes for patients with progressive disease remain poor, with negligible long-term survival. Therefore, understanding the acquired molecular rearrangements in NB cells with therapy pressure and developing improved therapeutic strategies is a critical need to improve the outcomes for high-risk NB patients. We investigated the rearrangement of MMP9 in NB with therapy pressure, and unveiled the signaling that facilitates NB evolution. Radiation-treatment (RT) significantly increased MMP9 expression/activity, and the induced enzyme activity was persistently maintained across NB cell lines. Furthermore, RT-triggered NFκB transcriptional activity and this RT-induced NFκB were required/adequate for MMP9 maintenance. RT-triggered NFκB-dependent MMP9 actuated a second-signaling feedback to NFκB, facilitating a NFκB-MMP9-NFκB positive feedback cycle (PFC). Critically, MMP9-NFκB feedback is mediated by MMP9-dependent activation of IKKβ and ERK phosphotransferase activity. Beyond its tumor invasion/metastasis function, PFC-dependent MMP9 lessens RT-induced apoptosis and favors survival pathway through the activation of NFκB signaling. In addition, PFC-dependent MMP9 regulates 19 critical molecular determinants that play a pivotal role in tumor evolution. Interestingly, seven of 19 genes possess NFκB-binding sites, demonstrating that MMP9 regulates these molecules by activating NFκB. Collectively, these data suggest that RT-triggered NFκB-dependent MMP9 actuates feedback to NFκB though IKKβ- and ERK1/2-dependent IκBα phosphorylation. This RT-triggered PFC prompts MMP9-dependent survival advantage, tumor growth, and dissemination. Targeting therapy-pressure-driven PFC and/or selective inhibition of MMP9 maintenance could serve as promising therapeutic strategies for treatment of progressive NB.
KW - MMP9
KW - NFκB
KW - Progressive neuroblastoma
KW - Radiation therapy
KW - Therapy pressure
UR - http://www.scopus.com/inward/record.url?scp=85116772369&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116772369&partnerID=8YFLogxK
U2 - 10.1007/s10565-021-09663-4
DO - 10.1007/s10565-021-09663-4
M3 - Article
C2 - 34626302
AN - SCOPUS:85116772369
SN - 0742-2091
VL - 39
SP - 1053
EP - 1076
JO - Cell Biology and Toxicology
JF - Cell Biology and Toxicology
IS - 3
ER -