Mitogen-activated protein kinase/IκB kinase/NF-κB-dependent and AP-1-independent CX3CL1 expression in intestinal epithelial cells stimulated with Clostridium difficile toxin A

Su Hyuk Ko, Jong Ik Jeon, Hyunah Kim, Young Jeon Kim, Jeehee Youn, Jung Mogg Kim

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Clostridium difficile toxin A causes acute colitis associated with inflammatory cell infiltration and increased production of proinflammatory mediators. Although CX3CL1 (fractalkine) plays a role in chemoattracting monocytes/macrophages, NK cells, and T cells, little information is available on the regulated expression of CX3CL1 in response to toxin A stimulation. In this study, we investigated the role of C. difficile toxin A on CX3CL1 induction in intestinal epithelial cells. Stimulation of murine intestinal epithelial cells with toxin A resulted in the upregulation of CX3CL1. Expression of CX3CL1 was dependent on nuclear factor-kappaB (NF-κB) and IκB kinase (IKK) activation, while the suppression of activator protein-1 (AP-1) did not affect toxin A-induced CX3CL1 expression. Suppression of p38 mitogen-activated protein kinase (MAPK) significantly inhibited IKK-NF-κB signaling leading to CX3CL1 induction in C. difficile toxin A-stimulated cells. CX3CL1 was mainly secreted from the basolateral surfaces in toxin A-treated cells. Furthermore, inhibition of p38 activity attenuated the toxin A-induced upregulation of CX3CL1 in the mouse ileum in vivo. These results suggest that a pathway, including p38 MAPK, IKK, and NF-κB activation, is required for CX3CL1 induction in intestinal epithelial cells exposed to C. difficile toxin A and may regulate the development of intestinal inflammation induced by infection with toxigenic C. difficile. Key message: C. difficile toxin A causes colitis with inflammatory cell infiltration. CX3CL1 plays a role in chemoattracting immune cells. MAPK-NF-κB signaling is required for CX3CL1 induction in toxin A-exposed cells. CX3CL1 is mainly secreted from the basolateral surfaces. CX3CL1 may contribute to the regulation of toxigenic C. difficile infection.

Original languageEnglish (US)
Pages (from-to)411-427
Number of pages17
JournalJournal of Molecular Medicine
Volume92
Issue number4
DOIs
StatePublished - Apr 2014
Externally publishedYes

Keywords

  • CX3CL1
  • Clostridium difficile toxin A
  • Intestinal epithelial cells
  • Mitogen-activated protein kinase
  • Nuclear factor-kappaB

ASJC Scopus subject areas

  • Molecular Medicine
  • Drug Discovery
  • Genetics(clinical)

Fingerprint

Dive into the research topics of 'Mitogen-activated protein kinase/IκB kinase/NF-κB-dependent and AP-1-independent CX3CL1 expression in intestinal epithelial cells stimulated with Clostridium difficile toxin A'. Together they form a unique fingerprint.

Cite this