TY - JOUR
T1 - Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals
AU - Fang, Hezhi
AU - Zhang, Fengjiao
AU - Li, Fengjie
AU - Shi, Hao
AU - Ma, Lin
AU - Du, Miaomiao
AU - You, Yanting
AU - Qiu, Ruyi
AU - Nie, Hezhongrong
AU - Shen, Lijun
AU - Bai, Yidong
AU - Lyu, Jianxin
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - Haplogroup G predisposes one to an increased risk of osteoarthritis (OA) occurrence, while haplogroup B4 is a protective factor against OA onset. However, the underlying mechanism is not known. Here, by using trans-mitochondrial technology, we demonstrate that the activity levels of mitochondrial respiratory chain complex I and III are higher in G cybrids than in haplogroup B4. Increased mitochondrial oxidative phosphorylation (OXPHOS) promotes mitochondrial-related ATP generation in G cybrids, thereby shifting the ATP generation from glycolysis to OXPHOS. Furthermore, we found that lower glycolysis in G cybrids decreased cell viability under hypoxia (1% O2) compared with B4 cybrids. In contrast, G cybrids have a lower NAD+/NADH ratio and less generation of reactive oxygen species (ROS) under both hypoxic (1% O2) and normoxic (20% O2) conditions than B4 cybrids, indicating that mitochondrial-mediated signaling pathways (retrograde signaling) differ between these cybrids. Gene expression profiling of G and B4 cybrids using next-generation sequencing technology showed that 404 of 575 differentially expressed genes (DEGs) between G and B4 cybrids are enriched in 17 pathways, of which 11 pathways participate in OA. Quantitative reverse transcription PCR (qRT-PCR) analyses confirmed that G cybrids had lower glycolysis activity than B4 cybrids. In addition, we confirmed that the rheumatoid arthritis pathway was over-activated in G cybrids, although the remaining 9 pathways were not further tested by qRT-PCR. In conclusion, our findings indicate that mtDNA haplogroup G may increase the risk of OA by shifting the metabolic profile from glycolysis to OXPHOS and by over-activating OA-related signaling pathways.
AB - Haplogroup G predisposes one to an increased risk of osteoarthritis (OA) occurrence, while haplogroup B4 is a protective factor against OA onset. However, the underlying mechanism is not known. Here, by using trans-mitochondrial technology, we demonstrate that the activity levels of mitochondrial respiratory chain complex I and III are higher in G cybrids than in haplogroup B4. Increased mitochondrial oxidative phosphorylation (OXPHOS) promotes mitochondrial-related ATP generation in G cybrids, thereby shifting the ATP generation from glycolysis to OXPHOS. Furthermore, we found that lower glycolysis in G cybrids decreased cell viability under hypoxia (1% O2) compared with B4 cybrids. In contrast, G cybrids have a lower NAD+/NADH ratio and less generation of reactive oxygen species (ROS) under both hypoxic (1% O2) and normoxic (20% O2) conditions than B4 cybrids, indicating that mitochondrial-mediated signaling pathways (retrograde signaling) differ between these cybrids. Gene expression profiling of G and B4 cybrids using next-generation sequencing technology showed that 404 of 575 differentially expressed genes (DEGs) between G and B4 cybrids are enriched in 17 pathways, of which 11 pathways participate in OA. Quantitative reverse transcription PCR (qRT-PCR) analyses confirmed that G cybrids had lower glycolysis activity than B4 cybrids. In addition, we confirmed that the rheumatoid arthritis pathway was over-activated in G cybrids, although the remaining 9 pathways were not further tested by qRT-PCR. In conclusion, our findings indicate that mtDNA haplogroup G may increase the risk of OA by shifting the metabolic profile from glycolysis to OXPHOS and by over-activating OA-related signaling pathways.
KW - Chondrocyte
KW - Mitochondrial DNA haplogroup
KW - Osteoarthritis
KW - Retrograde signaling
UR - http://www.scopus.com/inward/record.url?scp=84958817778&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84958817778&partnerID=8YFLogxK
U2 - 10.1016/j.bbadis.2015.12.017
DO - 10.1016/j.bbadis.2015.12.017
M3 - Article
C2 - 26705675
AN - SCOPUS:84958817778
SN - 0925-4439
VL - 1862
SP - 829
EP - 836
JO - Biochimica et Biophysica Acta - Molecular Basis of Disease
JF - Biochimica et Biophysica Acta - Molecular Basis of Disease
IS - 4
ER -