TY - JOUR
T1 - MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity
AU - Su, Hang
AU - Yang, Jian Rong
AU - Xu, Teng
AU - Huang, Jun
AU - Xu, Li
AU - Yuan, Yunfei
AU - Zhuang, Shi Mei
PY - 2009/2/1
Y1 - 2009/2/1
N2 - Although aberrant microRNA (miRNA) expressions have been observed in different types of cancer, their pathophysiologic role and their relevance to tumorigenesis are still largely unknown. In this study, we first evaluated the expression of 308 miRNAs in human hepatocellular carcinoma (HCC) and normal hepatic tissues and identified 29 differentially expressed miRNAs in HCC tissues. miR-101, a significantly down-regulated miRNA, was further studied in greater detail because the signal pathway(s) regulated by miR-101 and the role of miR-101 in tumorigenesis have not yet been elucidated. Interestingly, decreased expression of miR-101 was found in all six hepatoma cell lines examined and in as high as 94.1% of HCC tissues, compared with their nontumor counterparts. Furthermore, ectopic expression of miR-101 dramatically suppressed the ability of hepatoma cells to form colonies in vitro and to develop tumors in nude mice. We also found that miR-101 could sensitize hepatoma cell lines to both serum starvation- and chemotherapeutic drug-induced apoptosis. Further investigation revealed that miR-101 significantly repressed the expression of luciferase carrying the 3′-untranslated region of Mcl-1 and reduced the endogenous protein level of Mcl-1, whereas the miR-101 inhibitor obviously up-regulated Mcl-1 expression and inhibited cell apoptosis. Moreover, silencing of Mcl-1 phenocopied the effect of miR-101 and forced expression of Mcl-1 could reverse the proapoptotic effect of miR-101. These results indicate that miR-101 may exert its proapoptotic function via targeting Mcl-1. Taken together, our data suggest an important role of miR-101 in the molecular etiology of cancer and implicate the potential application of miR-101 in cancer therapy.
AB - Although aberrant microRNA (miRNA) expressions have been observed in different types of cancer, their pathophysiologic role and their relevance to tumorigenesis are still largely unknown. In this study, we first evaluated the expression of 308 miRNAs in human hepatocellular carcinoma (HCC) and normal hepatic tissues and identified 29 differentially expressed miRNAs in HCC tissues. miR-101, a significantly down-regulated miRNA, was further studied in greater detail because the signal pathway(s) regulated by miR-101 and the role of miR-101 in tumorigenesis have not yet been elucidated. Interestingly, decreased expression of miR-101 was found in all six hepatoma cell lines examined and in as high as 94.1% of HCC tissues, compared with their nontumor counterparts. Furthermore, ectopic expression of miR-101 dramatically suppressed the ability of hepatoma cells to form colonies in vitro and to develop tumors in nude mice. We also found that miR-101 could sensitize hepatoma cell lines to both serum starvation- and chemotherapeutic drug-induced apoptosis. Further investigation revealed that miR-101 significantly repressed the expression of luciferase carrying the 3′-untranslated region of Mcl-1 and reduced the endogenous protein level of Mcl-1, whereas the miR-101 inhibitor obviously up-regulated Mcl-1 expression and inhibited cell apoptosis. Moreover, silencing of Mcl-1 phenocopied the effect of miR-101 and forced expression of Mcl-1 could reverse the proapoptotic effect of miR-101. These results indicate that miR-101 may exert its proapoptotic function via targeting Mcl-1. Taken together, our data suggest an important role of miR-101 in the molecular etiology of cancer and implicate the potential application of miR-101 in cancer therapy.
UR - http://www.scopus.com/inward/record.url?scp=59149098054&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=59149098054&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-08-2886
DO - 10.1158/0008-5472.CAN-08-2886
M3 - Article
C2 - 19155302
AN - SCOPUS:59149098054
SN - 0008-5472
VL - 69
SP - 1135
EP - 1142
JO - Cancer Research
JF - Cancer Research
IS - 3
ER -