TY - JOUR
T1 - Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson's disease
AU - Ebadi, Manuchair
AU - Brown-Borg, Holly
AU - El Refaey, Hesham
AU - Singh, Brij B.
AU - Garrett, Scott
AU - Shavali, Shaik
AU - Sharma, Sushil K.
N1 - Funding Information:
This research was supported by a grant from the Counter Drug Technology Assessment Center, Office of National Drug Control Policy (no. DATMO5-02C-1252, to M.E.), a grant from NINDS (no. 2R01 NS3456609, to M.E.), and grant R01 AG17059-09 (to M.E.). The excellent secretarial skills of Mrs. Dani Stramer in preparing this manuscript are gratefully acknowledged.
PY - 2005/3/24
Y1 - 2005/3/24
N2 - Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the substantia nigra zona compacta, and in other sub-cortical nuclei associated with a widespread occurrence of Lewy bodies. The cause of cell death in Parkinson's disease is still poorly understood, but a defect in mitochondrial oxidative phosphorylation and enhanced oxidative and nitrative stresses have been proposed. We have studied controlwt (C57B1/6), metallothionein transgenic (MTtrans), metallothionein double gene knock (MT dko), α-synuclein knock out (α-synko), α-synuclein-metallothionein triple knock out (α-syn-MT tko), weaver mutant (wv/wv) mice, and Ames dwarf mice to examine the role of peroxynitrite in the etiopathogenesis of Parkinson's disease and aging. Although MTdko mice were genetically susceptible to 1, methyl, 4-phenyl, 1,2,3,6-tetrahydropyridine (MPTP) Parkinsonism, they did not exhibit any overt clinical symptoms of neurodegeneration and gross neuropathological changes as observed in wv/wv mice. Progressive neurodegenerative changes were associated with typical Parkinsonism in wv/wv mice. Neurodegenerative changes in wv/wv mice were observed primarily in the striatum, hippocampus and cerebellum. Various hallmarks of apoptosis including caspase-3, TNFα, NFκB, metallothioneins (MT-1, 2) and complex-1 nitration were increased; whereas glutathione, complex-1, ATP, and Ser(40)-phosphorylation of tyrosine hydroxylase, and striatal 18F-DOPA uptake were reduced in wv/wv mice as compared to other experimental genotypes. Striatal neurons of wv/wv mice exhibited age-dependent increase in dense cored intra-neuronal inclusions, cellular aggregation, proto-oncogenes (c-fos, c-jun, caspase-3, and GAPDH) induction, inter-nucleosomal DNA fragmentation, and neuro-apoptosis. MT trans and α-Synko mice were geneticallyresistant to MPTP-Parkinsonism and Ames dwarf mice possessed significantly higher concentrations of striatal coenzyme Q10 and metallothioneins (MT 1, 2) and lived almost 2.5 times longer as compared to controlwt mice. A potent peroxynitrite ion generator, 3-morpholinosydnonimine (SIN-1)-induced apoptosis was significantly attenuated in MTtrans fetal stem cells. These data are interpreted to suggest that peroxynitrite ions are involved in the etiopathogenesis of Parkinson's disease, and metallothionein-mediated coenzyme Q10 synthesis may provide neuroprotection.
AB - Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the substantia nigra zona compacta, and in other sub-cortical nuclei associated with a widespread occurrence of Lewy bodies. The cause of cell death in Parkinson's disease is still poorly understood, but a defect in mitochondrial oxidative phosphorylation and enhanced oxidative and nitrative stresses have been proposed. We have studied controlwt (C57B1/6), metallothionein transgenic (MTtrans), metallothionein double gene knock (MT dko), α-synuclein knock out (α-synko), α-synuclein-metallothionein triple knock out (α-syn-MT tko), weaver mutant (wv/wv) mice, and Ames dwarf mice to examine the role of peroxynitrite in the etiopathogenesis of Parkinson's disease and aging. Although MTdko mice were genetically susceptible to 1, methyl, 4-phenyl, 1,2,3,6-tetrahydropyridine (MPTP) Parkinsonism, they did not exhibit any overt clinical symptoms of neurodegeneration and gross neuropathological changes as observed in wv/wv mice. Progressive neurodegenerative changes were associated with typical Parkinsonism in wv/wv mice. Neurodegenerative changes in wv/wv mice were observed primarily in the striatum, hippocampus and cerebellum. Various hallmarks of apoptosis including caspase-3, TNFα, NFκB, metallothioneins (MT-1, 2) and complex-1 nitration were increased; whereas glutathione, complex-1, ATP, and Ser(40)-phosphorylation of tyrosine hydroxylase, and striatal 18F-DOPA uptake were reduced in wv/wv mice as compared to other experimental genotypes. Striatal neurons of wv/wv mice exhibited age-dependent increase in dense cored intra-neuronal inclusions, cellular aggregation, proto-oncogenes (c-fos, c-jun, caspase-3, and GAPDH) induction, inter-nucleosomal DNA fragmentation, and neuro-apoptosis. MT trans and α-Synko mice were geneticallyresistant to MPTP-Parkinsonism and Ames dwarf mice possessed significantly higher concentrations of striatal coenzyme Q10 and metallothioneins (MT 1, 2) and lived almost 2.5 times longer as compared to controlwt mice. A potent peroxynitrite ion generator, 3-morpholinosydnonimine (SIN-1)-induced apoptosis was significantly attenuated in MTtrans fetal stem cells. These data are interpreted to suggest that peroxynitrite ions are involved in the etiopathogenesis of Parkinson's disease, and metallothionein-mediated coenzyme Q10 synthesis may provide neuroprotection.
KW - 18F-DOPA
KW - Ames dwarf mice
KW - Fetal stem cell transplantation
KW - Homozygous weaver mutant mice (WMhomo)
KW - Metallothionein double gene knockout mice
KW - Metallothionein transgenic mice
KW - MicroPET imaging
KW - Parkinson's disease
KW - a-synuclein knockout mice
UR - http://www.scopus.com/inward/record.url?scp=15744373545&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=15744373545&partnerID=8YFLogxK
U2 - 10.1016/j.molbrainres.2004.09.011
DO - 10.1016/j.molbrainres.2004.09.011
M3 - Review article
C2 - 15790531
AN - SCOPUS:15744373545
SN - 0169-328X
VL - 134
SP - 67
EP - 75
JO - Molecular Brain Research
JF - Molecular Brain Research
IS - 1
ER -