TY - JOUR
T1 - Metabolic dysregulation in hepacivirus infection of common marmosets (Callithrix jacchus)
AU - Manickam, Cordelia
AU - Wachtman, Lynn
AU - Martinot, Amanda J.
AU - Giavedoni, Luis D.
AU - Reeves, R. Keith
N1 - Publisher Copyright:
© 2017 Manickam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/1
Y1 - 2017/1
N2 - Chronic hepatitis C has been associated with metabolic syndrome that includes insulin resistance, hepatic steatosis and obesity. These metabolic aberrations are risk factors for disease severity and treatment outcome in infected patients. Experimental infection of marmosets with GBV-B serves as a tangible, small animal model for human HCV infection, and while virology and pathology are well described, a full investigation of clinical disease and the metabolic milieu is lacking. In this study six marmosets were infected intravenously with GBV-B and changes in hematologic, serum biochemical and plasma metabolic measures were investigated over the duration of infection. Infected animals exhibited signs of lymphocytopenia, but platelet and RBC counts were generally stable or even increased. Although most animals showed a transient decline in blood glucose, infection resulted in several fold increases in plasma insulin, glucagon and glucagon-like peptide 1 (GLP-1). All infected animals experienced transient weight loss within the first 28 days of infection, but also became hypertriglyceridemic and had up to 10-fold increases in adipocytokines such as resistin and plasminogen activator inhibitor 1 (PAI-1). In liver, moderate to severe cytoplasmic changes associated with steatotic changes was observed microscopically at 168 days post infection. Collectively, these results suggest that GBV-B infection is accompanied by hematologic, biochemical and metabolic abnormalities that could lead to obesity, diabetes, thrombosis and atherosclerosis, even after virus has been cleared. Our findings mirror those found in HCV patients, suggesting that metabolic syndrome could be conserved among hepaciviruses, and both mechanistic and interventional studies for treating HCV-induced metabolic complications could be evaluated in this animal model.
AB - Chronic hepatitis C has been associated with metabolic syndrome that includes insulin resistance, hepatic steatosis and obesity. These metabolic aberrations are risk factors for disease severity and treatment outcome in infected patients. Experimental infection of marmosets with GBV-B serves as a tangible, small animal model for human HCV infection, and while virology and pathology are well described, a full investigation of clinical disease and the metabolic milieu is lacking. In this study six marmosets were infected intravenously with GBV-B and changes in hematologic, serum biochemical and plasma metabolic measures were investigated over the duration of infection. Infected animals exhibited signs of lymphocytopenia, but platelet and RBC counts were generally stable or even increased. Although most animals showed a transient decline in blood glucose, infection resulted in several fold increases in plasma insulin, glucagon and glucagon-like peptide 1 (GLP-1). All infected animals experienced transient weight loss within the first 28 days of infection, but also became hypertriglyceridemic and had up to 10-fold increases in adipocytokines such as resistin and plasminogen activator inhibitor 1 (PAI-1). In liver, moderate to severe cytoplasmic changes associated with steatotic changes was observed microscopically at 168 days post infection. Collectively, these results suggest that GBV-B infection is accompanied by hematologic, biochemical and metabolic abnormalities that could lead to obesity, diabetes, thrombosis and atherosclerosis, even after virus has been cleared. Our findings mirror those found in HCV patients, suggesting that metabolic syndrome could be conserved among hepaciviruses, and both mechanistic and interventional studies for treating HCV-induced metabolic complications could be evaluated in this animal model.
UR - http://www.scopus.com/inward/record.url?scp=85009387152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009387152&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0170240
DO - 10.1371/journal.pone.0170240
M3 - Article
C2 - 28085952
AN - SCOPUS:85009387152
SN - 1932-6203
VL - 12
JO - PLoS One
JF - PLoS One
IS - 1
M1 - e0170240
ER -