TY - JOUR
T1 - Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats
AU - Sudnikovich, Elena Ju
AU - Maksimchik, Yuri Z.
AU - Zabrodskaya, Svetlana V.
AU - Kubyshin, Valeri L.
AU - Lapshina, Elena A.
AU - Bryszewska, Maria
AU - Reiter, Russel J.
AU - Zavodnik, Ilya B.
PY - 2007/8/27
Y1 - 2007/8/27
N2 - Enhanced oxidative stress and impairments in nitric oxide synthesis and bioavailability are of considerable importance in the pathogenesis of diabetic vascular diseases. The aim of the present work was to evaluate the metabolic effects of pharmacological doses of the melatonin, a known antioxidant, on streptozotocin-induced diabetic damage in rats. We investigated the indolamine's influence on the cellular redox-balance, nitric oxide (NO) level, and the activities of antioxidative defence enzymes, as well as the activities of enzymes involved in phase II detoxication and NADPH-generating pentose phosphate pathway. Blood glucose, glycated hemoglobin, bilirubin, as well as plasma alanine aminotransferase activities increased and body weight was reduced in rats with streptozotocin-induced (60 mg/kg, i.p.) diabetes (25 days). The NO level was markedly increased in diabetic plasma (by 50%) and aortic tissue (by 30%). The hyperglycemia resulted in reduced activities of glutathione peroxidase (by 25%), catalase (by 20%), glucose-6-phosphate dehydrogenase (by 55%) and transketolase (by 40%) in liver tissue of diabetic animals. Melatonin treatment (10 mg/kg, 18 days) did not influence the level of hyperglycemia or glycated hemoglobin and it had little effect on the activities of antioxidative enzymes. However, melatonin markedly reversed the activities of glucose-6-phosphate dehydrogenase and transketolase in liver tissue of diabetic rats. The most pronounced effect of the melatonin administration was the prevention of an increase in nitric oxide levels in blood plasma and aortic tissue during diabetes. In in vitro experiments, nitrosomelatonin formation in the presence of nitrosodonors was observed. This implies that melatonin might operate as an NO scavenger and carrier. Thus, melatonin treatment may have some beneficial effects in controlling diabetic vascular complications.
AB - Enhanced oxidative stress and impairments in nitric oxide synthesis and bioavailability are of considerable importance in the pathogenesis of diabetic vascular diseases. The aim of the present work was to evaluate the metabolic effects of pharmacological doses of the melatonin, a known antioxidant, on streptozotocin-induced diabetic damage in rats. We investigated the indolamine's influence on the cellular redox-balance, nitric oxide (NO) level, and the activities of antioxidative defence enzymes, as well as the activities of enzymes involved in phase II detoxication and NADPH-generating pentose phosphate pathway. Blood glucose, glycated hemoglobin, bilirubin, as well as plasma alanine aminotransferase activities increased and body weight was reduced in rats with streptozotocin-induced (60 mg/kg, i.p.) diabetes (25 days). The NO level was markedly increased in diabetic plasma (by 50%) and aortic tissue (by 30%). The hyperglycemia resulted in reduced activities of glutathione peroxidase (by 25%), catalase (by 20%), glucose-6-phosphate dehydrogenase (by 55%) and transketolase (by 40%) in liver tissue of diabetic animals. Melatonin treatment (10 mg/kg, 18 days) did not influence the level of hyperglycemia or glycated hemoglobin and it had little effect on the activities of antioxidative enzymes. However, melatonin markedly reversed the activities of glucose-6-phosphate dehydrogenase and transketolase in liver tissue of diabetic rats. The most pronounced effect of the melatonin administration was the prevention of an increase in nitric oxide levels in blood plasma and aortic tissue during diabetes. In in vitro experiments, nitrosomelatonin formation in the presence of nitrosodonors was observed. This implies that melatonin might operate as an NO scavenger and carrier. Thus, melatonin treatment may have some beneficial effects in controlling diabetic vascular complications.
KW - Diabetes
KW - Melatonin
KW - Nitric oxide
KW - Nitrosomelatonin
UR - http://www.scopus.com/inward/record.url?scp=34547683153&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547683153&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2007.05.018
DO - 10.1016/j.ejphar.2007.05.018
M3 - Article
C2 - 17597602
AN - SCOPUS:34547683153
SN - 0014-2999
VL - 569
SP - 180
EP - 187
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
IS - 3
ER -