Mechanism of action of benzodiazepines on GABA A receptors

Claudia Campo-Soria, Yongchang Chang, David S Weiss

Research output: Contribution to journalArticle

102 Citations (Scopus)

Abstract

Wild-type and mutant α1β2γ2 GABA A receptors were expressed in Xenopus laevis oocytes and examined using the two-electrode voltage clamp. Dose-response relationships for GABA were compared in the absence and presence of 1 μM diazepam (DZP) or methyl-6,7-dimethoxy-4-ethyl-beta- carboline-3-carboxylate (DMCM). The dose-current relationships yielded EC 50's (concentration for half-maximal activation) of 41.0 ± 3.0, 21.7 ± 2.7, and 118.3 ± 6.8 μM for GABA, GABA plus DZP, and GABA plus DMCM, respectively. DZP- and DMCM-mediated modulation were examined in GABA A receptors in which the β-subunit carries the L259S mutation. This mutation has been shown to produce spontaneous opening and impart a leftward shift in the dose-response relationship. In this case, neither DZP nor DMCM produced a significant alteration in the GABA dose-response relationship with GABA EC 50's of 0.078 ± 0.005, 0.12 ± 0.03, and 0.14 ± 0.004 μM for GABA, GABA plus 1 μM DZP, and GABA plus 1 μM DMCM. DZP- and DMCM-mediated modulations were examined in GABA A receptors in which the α-subunit carries the L263S mutation. This mutation also produced spontaneous opening and a leftward shift of the GABA dose-response relation, but to a lesser extent than that of βL259S. In this case, the leftward and rightward shifts for DZP and DMCM were still present with EC 50's = 0.24 ± 0.03, 0.14 ± 0.02, and 1.2 ± 0.04 μM for GABA, GABA plus 1 μM DZP, and GABA plus 1 μM DMCM, respectively. Oocytes expressing ultrahigh levels of wild-type GABA A receptors exhibited currents in response to 1 μM DZP alone, whereas DMCM decreased the baseline current. The DZP-mediated activation currents were determined in wild-type receptors as well as receptors in which the GABA binding site was mutated (β2Y205S). The EC 50's for DZP-mediated activation were 72.0 ± 2.0 and 115 ± 6.2 nM, respectively, similar to the EC 50 for DZP-mediated enhancement of the wild-type GABA-activated current (64.8 ± 3.7 nM). Our results support a mechanism in which DZP increases the apparent affinity of the receptor, not by altering the affinity of the closed state, but rather by shifting the equilibrium towards the high-affinity open state.

Original languageEnglish (US)
Pages (from-to)984-990
Number of pages7
JournalBritish Journal of Pharmacology
Volume148
Issue number7
DOIs
StatePublished - Aug 12 2006

Fingerprint

GABA-A Receptors
Benzodiazepines
gamma-Aminobutyric Acid
Diazepam
Mutation
Oocytes
methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate
Xenopus laevis
Electrodes

Keywords

  • Allosteric activation
  • Diazepam
  • DMCM
  • GABA receptor
  • Ligand-gated ion channel
  • MWC model

ASJC Scopus subject areas

  • Pharmacology

Cite this

Mechanism of action of benzodiazepines on GABA A receptors. / Campo-Soria, Claudia; Chang, Yongchang; Weiss, David S.

In: British Journal of Pharmacology, Vol. 148, No. 7, 12.08.2006, p. 984-990.

Research output: Contribution to journalArticle

Campo-Soria, Claudia ; Chang, Yongchang ; Weiss, David S. / Mechanism of action of benzodiazepines on GABA A receptors. In: British Journal of Pharmacology. 2006 ; Vol. 148, No. 7. pp. 984-990.
@article{6e801d014abb4da993608b3944de3faf,
title = "Mechanism of action of benzodiazepines on GABA A receptors",
abstract = "Wild-type and mutant α1β2γ2 GABA A receptors were expressed in Xenopus laevis oocytes and examined using the two-electrode voltage clamp. Dose-response relationships for GABA were compared in the absence and presence of 1 μM diazepam (DZP) or methyl-6,7-dimethoxy-4-ethyl-beta- carboline-3-carboxylate (DMCM). The dose-current relationships yielded EC 50's (concentration for half-maximal activation) of 41.0 ± 3.0, 21.7 ± 2.7, and 118.3 ± 6.8 μM for GABA, GABA plus DZP, and GABA plus DMCM, respectively. DZP- and DMCM-mediated modulation were examined in GABA A receptors in which the β-subunit carries the L259S mutation. This mutation has been shown to produce spontaneous opening and impart a leftward shift in the dose-response relationship. In this case, neither DZP nor DMCM produced a significant alteration in the GABA dose-response relationship with GABA EC 50's of 0.078 ± 0.005, 0.12 ± 0.03, and 0.14 ± 0.004 μM for GABA, GABA plus 1 μM DZP, and GABA plus 1 μM DMCM. DZP- and DMCM-mediated modulations were examined in GABA A receptors in which the α-subunit carries the L263S mutation. This mutation also produced spontaneous opening and a leftward shift of the GABA dose-response relation, but to a lesser extent than that of βL259S. In this case, the leftward and rightward shifts for DZP and DMCM were still present with EC 50's = 0.24 ± 0.03, 0.14 ± 0.02, and 1.2 ± 0.04 μM for GABA, GABA plus 1 μM DZP, and GABA plus 1 μM DMCM, respectively. Oocytes expressing ultrahigh levels of wild-type GABA A receptors exhibited currents in response to 1 μM DZP alone, whereas DMCM decreased the baseline current. The DZP-mediated activation currents were determined in wild-type receptors as well as receptors in which the GABA binding site was mutated (β2Y205S). The EC 50's for DZP-mediated activation were 72.0 ± 2.0 and 115 ± 6.2 nM, respectively, similar to the EC 50 for DZP-mediated enhancement of the wild-type GABA-activated current (64.8 ± 3.7 nM). Our results support a mechanism in which DZP increases the apparent affinity of the receptor, not by altering the affinity of the closed state, but rather by shifting the equilibrium towards the high-affinity open state.",
keywords = "Allosteric activation, Diazepam, DMCM, GABA receptor, Ligand-gated ion channel, MWC model",
author = "Claudia Campo-Soria and Yongchang Chang and Weiss, {David S}",
year = "2006",
month = "8",
day = "12",
doi = "10.1038/sj.bjp.0706796",
language = "English (US)",
volume = "148",
pages = "984--990",
journal = "British Journal of Pharmacology",
issn = "0007-1188",
publisher = "Wiley-Blackwell",
number = "7",

}

TY - JOUR

T1 - Mechanism of action of benzodiazepines on GABA A receptors

AU - Campo-Soria, Claudia

AU - Chang, Yongchang

AU - Weiss, David S

PY - 2006/8/12

Y1 - 2006/8/12

N2 - Wild-type and mutant α1β2γ2 GABA A receptors were expressed in Xenopus laevis oocytes and examined using the two-electrode voltage clamp. Dose-response relationships for GABA were compared in the absence and presence of 1 μM diazepam (DZP) or methyl-6,7-dimethoxy-4-ethyl-beta- carboline-3-carboxylate (DMCM). The dose-current relationships yielded EC 50's (concentration for half-maximal activation) of 41.0 ± 3.0, 21.7 ± 2.7, and 118.3 ± 6.8 μM for GABA, GABA plus DZP, and GABA plus DMCM, respectively. DZP- and DMCM-mediated modulation were examined in GABA A receptors in which the β-subunit carries the L259S mutation. This mutation has been shown to produce spontaneous opening and impart a leftward shift in the dose-response relationship. In this case, neither DZP nor DMCM produced a significant alteration in the GABA dose-response relationship with GABA EC 50's of 0.078 ± 0.005, 0.12 ± 0.03, and 0.14 ± 0.004 μM for GABA, GABA plus 1 μM DZP, and GABA plus 1 μM DMCM. DZP- and DMCM-mediated modulations were examined in GABA A receptors in which the α-subunit carries the L263S mutation. This mutation also produced spontaneous opening and a leftward shift of the GABA dose-response relation, but to a lesser extent than that of βL259S. In this case, the leftward and rightward shifts for DZP and DMCM were still present with EC 50's = 0.24 ± 0.03, 0.14 ± 0.02, and 1.2 ± 0.04 μM for GABA, GABA plus 1 μM DZP, and GABA plus 1 μM DMCM, respectively. Oocytes expressing ultrahigh levels of wild-type GABA A receptors exhibited currents in response to 1 μM DZP alone, whereas DMCM decreased the baseline current. The DZP-mediated activation currents were determined in wild-type receptors as well as receptors in which the GABA binding site was mutated (β2Y205S). The EC 50's for DZP-mediated activation were 72.0 ± 2.0 and 115 ± 6.2 nM, respectively, similar to the EC 50 for DZP-mediated enhancement of the wild-type GABA-activated current (64.8 ± 3.7 nM). Our results support a mechanism in which DZP increases the apparent affinity of the receptor, not by altering the affinity of the closed state, but rather by shifting the equilibrium towards the high-affinity open state.

AB - Wild-type and mutant α1β2γ2 GABA A receptors were expressed in Xenopus laevis oocytes and examined using the two-electrode voltage clamp. Dose-response relationships for GABA were compared in the absence and presence of 1 μM diazepam (DZP) or methyl-6,7-dimethoxy-4-ethyl-beta- carboline-3-carboxylate (DMCM). The dose-current relationships yielded EC 50's (concentration for half-maximal activation) of 41.0 ± 3.0, 21.7 ± 2.7, and 118.3 ± 6.8 μM for GABA, GABA plus DZP, and GABA plus DMCM, respectively. DZP- and DMCM-mediated modulation were examined in GABA A receptors in which the β-subunit carries the L259S mutation. This mutation has been shown to produce spontaneous opening and impart a leftward shift in the dose-response relationship. In this case, neither DZP nor DMCM produced a significant alteration in the GABA dose-response relationship with GABA EC 50's of 0.078 ± 0.005, 0.12 ± 0.03, and 0.14 ± 0.004 μM for GABA, GABA plus 1 μM DZP, and GABA plus 1 μM DMCM. DZP- and DMCM-mediated modulations were examined in GABA A receptors in which the α-subunit carries the L263S mutation. This mutation also produced spontaneous opening and a leftward shift of the GABA dose-response relation, but to a lesser extent than that of βL259S. In this case, the leftward and rightward shifts for DZP and DMCM were still present with EC 50's = 0.24 ± 0.03, 0.14 ± 0.02, and 1.2 ± 0.04 μM for GABA, GABA plus 1 μM DZP, and GABA plus 1 μM DMCM, respectively. Oocytes expressing ultrahigh levels of wild-type GABA A receptors exhibited currents in response to 1 μM DZP alone, whereas DMCM decreased the baseline current. The DZP-mediated activation currents were determined in wild-type receptors as well as receptors in which the GABA binding site was mutated (β2Y205S). The EC 50's for DZP-mediated activation were 72.0 ± 2.0 and 115 ± 6.2 nM, respectively, similar to the EC 50 for DZP-mediated enhancement of the wild-type GABA-activated current (64.8 ± 3.7 nM). Our results support a mechanism in which DZP increases the apparent affinity of the receptor, not by altering the affinity of the closed state, but rather by shifting the equilibrium towards the high-affinity open state.

KW - Allosteric activation

KW - Diazepam

KW - DMCM

KW - GABA receptor

KW - Ligand-gated ion channel

KW - MWC model

UR - http://www.scopus.com/inward/record.url?scp=33749341551&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749341551&partnerID=8YFLogxK

U2 - 10.1038/sj.bjp.0706796

DO - 10.1038/sj.bjp.0706796

M3 - Article

C2 - 16783415

AN - SCOPUS:33749341551

VL - 148

SP - 984

EP - 990

JO - British Journal of Pharmacology

JF - British Journal of Pharmacology

SN - 0007-1188

IS - 7

ER -