Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression

Jeffrey S. Gilbert, Alvin L. Lang, Mark J. Nijland

    Research output: Contribution to journalArticlepeer-review

    23 Scopus citations


    Background: Adequate maternal nutrition during gestation is requisite for fetal nutrition and development. While a large group of epidemiological studies indicate poor fetal nutrition increases heart disease risk and mortality in later life, little work has focused on the effects of impaired maternal nutrition on fetal heart development. We have previously shown that 50% global nutrient restriction from 28-78 days of gestation (early to mid-pregnancy; term = 147 days) in sheep at mid-gestation retards fetal growth while protecting growth of heart and results in hypertensive male offspring at nine months of age. In the present study, we evaluate LV gene transcription using RNA protection assay and real-time reverse transcriptase polymerase chain reaction, and protein expression using western blot, of VEGF and AT1 and AT2 receptors for AngII at mid-gestation in fetuses from pregnant ewes fed either 100% (C) or 50% (NR) diet during early to mid-gestation. Results: No difference between the NR (n = 6) and C (n = 6) groups was found in gene transcription of the AngII receptors. Immunoreactive AT1 (1918.4 +/- 154.2 vs. 3881.2 +/- 494.9; P < 0.01) and AT2 (1729.9 +/- 293.6 vs. 3043.3 +/- 373.2; P < 0.02) was decreased in the LV of NR fetuses compared to C fetuses. The LV of fetuses exposed to NR had greater transcription of mRNA for VEGF (5.42 ± 0.85 vs. 3.05 ± 0.19; P < 0.03) than respective C LV, while no change was observed in immunoreactive VEGF. Conclusion: The present study demonstrates that VEGF, AT1 and AT2 message and protein are not tightly coupled, pointing to post-transcriptional control points in the mid gestation NR fetus. The present data also suggest that the role of VEGF and the renin-angiotensin system receptors during conditions inducing protected cardiac growth is distinct from the role these proteins may play in normal fetal cardiac growth. The present findings may help explain epidemiological studies that indicate fetuses with low birth weight carry an increased risk of mortality from coronary and cardiovascular disease, particularly if these individuals have reduced cardiovascular reserve due to an epigenetic decrease in vascularization.

    Original languageEnglish (US)
    Article number27
    JournalReproductive Biology and Endocrinology
    StatePublished - Jul 14 2005

    ASJC Scopus subject areas

    • Endocrinology
    • Obstetrics and Gynecology
    • Reproductive Medicine
    • Developmental Biology


    Dive into the research topics of 'Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression'. Together they form a unique fingerprint.

    Cite this