Lipid signaling: Sleep, synaptic plasticity, and neuroprotection

Chu Chen, Nicolas G. Bazan

Research output: Contribution to journalArticlepeer-review

164 Scopus citations

Abstract

Increasing evidence indicates that bioactive lipids participate in the regulation of synaptic function and dysfunction. We have demonstrated that signaling mediated by platelet-activating factor (PAF) and cyclooxygenase (COX)-2-synthesized PGE2 is involved in synaptic plasticity, memory, and neuronal protection [Clark GD, Happel LT, Zorumski CF, Bazan NG. Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron 1992; 9:1211; Kato K, Clark GD, Bazan NG, Zorumski CF. Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 1994; 367:175; Izquierdo I, Fin C, Schmitz PK, et al. Memory enhancement by intrahippocampal, intraamygdala or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance. Proc Natl Acad Sci USA 1995; 92:5047; Chen C, Magee CJ, Bazan NG. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol 2002; 87:2851]. Recently, we found that prolonged continuous wakefulness (primarily rapid eye movement (REM)-sleep deprivation, SD) causes impairments in hippocampal long-term synaptic plasticity and hippocampus-dependent memory formation [McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 2003; 23:9687]. To explore the mechanisms underlying SD-induced impairments, we have studied several bioactive lipids in the hippocampus following SD. It appears that SD causes increases in prostaglandin D2 (PGD2) and 2-arachidonylglycerol (2-AG), and a decrease in PGE2, suggesting that these lipid messengers participate in memory consolidation during REM sleep. We have also explored the formation of endogenous neuroprotective lipids. Toward this aim, we have used ischemia-reperfusion damage and LC-PDA-ESI-MS-MS-based lipidomic analysis and identified docosanoids derived from synaptic phospholipid-enriched docosahexaenoic acid. Some of the docosanoids exert potent neuroprotective bioactivity [Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 2003; 278:43807; Mukherjee PK, Marcheselli VL, Serhan CN, Bazan, NG. Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Nat Acad Sci USA 2004; 101:8491). Taken together, these observations that signaling lipids participate in synaptic plasticity, cognition, and survival indicate that lipid signaling is closely associated with several functions (e.g; learning and memory, sleep, and experimental stroke) and pathologic events. Alterations in endogenous signaling lipids or their receptors resulting from drug abuse lead to changes in synaptic circuitry and induce profound effects on these important functions. In the present article, we will briefly review bioactive lipids involved in sleep, synaptic transmission and plasticity, and neuroprotection, focusing mainly on our experimental studies and how these signaling molecules are related to functions and implicated in some neurologic disorders.

Original languageEnglish (US)
Pages (from-to)65-76
Number of pages12
JournalProstaglandins and Other Lipid Mediators
Volume77
Issue number1-4 SPEC. ISS.
DOIs
StatePublished - Sep 2005
Externally publishedYes

Keywords

  • Cyclooxygenase
  • Endocannabinoid
  • Long-term potentiation
  • Neuroprotectin D1
  • Platelet-activating factor
  • Polyunsaturated fatty acid
  • Prostaglandin E
  • Sleep deprivation
  • Synaptic plasticity

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Pharmacology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Lipid signaling: Sleep, synaptic plasticity, and neuroprotection'. Together they form a unique fingerprint.

Cite this