Lateral diffusion of ganglioside GM1 in phospholipid bilayer membranes

B. Goins, M. Masserini, B. G. Barisas, E. Freire

Research output: Contribution to journalArticle

56 Scopus citations

Abstract

The lateral diffusion coefficient of ganglioside GM1 incorporated into preformed dimyristoylphosphatidylcholine (DMPC) vesicles has been investigated under a variety of conditions using the technique of fluorescence photobleaching recovery. For these studies the fluorescent probe 5-(((2-Carbohydrazino)methyl)thio)acetyl) amino eosin was covalently attached to the periodate-oxidized sialic acid residue of ganglioside GM1. This labeled ganglioside exhibited a behavior similar to that of the intact ganglioside, and was able to bind cholera toxin. The lateral diffusion coefficient of the ganglioside was dependent upon the gel-liquid crystalline transition of DMPC. Above Tm the lateral diffusion coefficient of the ganglioside was 4.7 X 10(-9) cm2 s-1 (with greater than 80% fluorescence recovery). This diffusion coefficient is significantly slower than the one previously observed for phospholipids in DMPC bilayers. The addition of increasing amounts of ganglioside, up to a maximum of 10 mol %, did not have a significant effect on the lateral diffusion coefficient or in the percent recovery. At 30 degrees C, the lateral mobility of ganglioside GM1 was not affected by the presence of 5 mM Ca2+, suggesting that, at least above Tm, Ca2+ does not induce a major perturbation in the lateral organization of the ganglioside molecules. The addition of stoichiometric amounts of cholera toxin to samples containing either 1 or 10 mol % ganglioside GM1 produced only a small decrease in the measured diffusion coefficient. The fluorescence recovery after photobleaching experiments were complemented with excimer formation experiments using pyrene-phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)

Original languageEnglish (US)
Pages (from-to)849-856
Number of pages8
JournalBiophysical Journal
Volume49
Issue number4
DOIs
StatePublished - Jan 1 1986

    Fingerprint

ASJC Scopus subject areas

  • Biophysics

Cite this