TY - JOUR
T1 - Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge
AU - Parrott, Jennifer M.
AU - Redus, Laney
AU - O'Connor, Jason C.
N1 - Funding Information:
This research was supported by funding from the National Institute of Mental Health (R01MH090127 and P30MH089868 to JOC; 1F31MH102070-01A1 to JP), the National Center for Advancing Translational Studies (UL1TR001120 to JOC), and the Norman Hackerman Advanced Research Program (003659-0010-2012 to JOC). The content is the sole the responsibility of the authors and does not necessarily represent the views of the National Institute of Mental Health, the National Center for Advancing Translational Studies or the National Institutes of Health. R01MH090127 funded data collection, data analysis, data interpretation, and writing of the manuscript. P30MH089868, UL1TR001120, and 003659-0010-2012 supported the design of the study, data analysis, and data interpretation. 1F31MH102070-01A1 funded data analysis, data interpretation, and writing of the manuscript.
Publisher Copyright:
© 2016 The Author(s).
PY - 2016/5/27
Y1 - 2016/5/27
N2 - Background: Inflammation increases the risk of developing depression-related symptoms, and tryptophan metabolism is an important mediator of these behavior changes. Peripheral immune activation results in central up-regulation of pro-inflammatory cytokine expression, microglia activation, and the production of neurotoxic kynurenine metabolites. The neuroinflammatory and kynurenine metabolic response to peripheral immune activation has been largely characterized at the whole brain level. It is unknown if this metabolic response exhibits regional specificity even though the unique indoleamine 2,3-dioxygenase (IDO)-dependent depressive-like behaviors are known to be controlled by discrete brain regions. Therefore, regional characterization of neuroinflammation and kynurenine metabolism might allow for better understanding of the potential mechanisms that mediate inflammation-associated behavior changes. Methods: Following peripheral immune challenge with lipopolysaccharide (LPS), brain tissue from behaviorally relevant regions was analyzed for changes in mRNA of neuroinflammatory targets and kynurenine pathway enzymes. The metabolic balance of the kynurenine pathway was also determined in the peripheral circulation and these brain regions. Results: Peripheral LPS treatment resulted in region-independent up-regulation of brain expression of pro-inflammatory cytokines and glial cellular markers indicative of a neuroinflammatory response. The expression of kynurenine pathway enzymes was also largely region-independent. While the kynurenine/tryptophan ratio was elevated significantly in both the plasma and in each brain regions evaluated, the balance of kynurenine metabolism was skewed toward production of neurotoxic metabolites in the hippocampus. Conclusions: The upstream neuroinflammatory processes, such as pro-inflammatory cytokine production, glial cell activation, and kynurenine production, may be similar throughout the brain. However, it appears that the balance of downstream kynurenine metabolism is a tightly regulated brain region-dependent process.
AB - Background: Inflammation increases the risk of developing depression-related symptoms, and tryptophan metabolism is an important mediator of these behavior changes. Peripheral immune activation results in central up-regulation of pro-inflammatory cytokine expression, microglia activation, and the production of neurotoxic kynurenine metabolites. The neuroinflammatory and kynurenine metabolic response to peripheral immune activation has been largely characterized at the whole brain level. It is unknown if this metabolic response exhibits regional specificity even though the unique indoleamine 2,3-dioxygenase (IDO)-dependent depressive-like behaviors are known to be controlled by discrete brain regions. Therefore, regional characterization of neuroinflammation and kynurenine metabolism might allow for better understanding of the potential mechanisms that mediate inflammation-associated behavior changes. Methods: Following peripheral immune challenge with lipopolysaccharide (LPS), brain tissue from behaviorally relevant regions was analyzed for changes in mRNA of neuroinflammatory targets and kynurenine pathway enzymes. The metabolic balance of the kynurenine pathway was also determined in the peripheral circulation and these brain regions. Results: Peripheral LPS treatment resulted in region-independent up-regulation of brain expression of pro-inflammatory cytokines and glial cellular markers indicative of a neuroinflammatory response. The expression of kynurenine pathway enzymes was also largely region-independent. While the kynurenine/tryptophan ratio was elevated significantly in both the plasma and in each brain regions evaluated, the balance of kynurenine metabolism was skewed toward production of neurotoxic metabolites in the hippocampus. Conclusions: The upstream neuroinflammatory processes, such as pro-inflammatory cytokine production, glial cell activation, and kynurenine production, may be similar throughout the brain. However, it appears that the balance of downstream kynurenine metabolism is a tightly regulated brain region-dependent process.
KW - Brain regions
KW - Hippocampus
KW - Indoleamine 2,3-dioxygenase
KW - Kynurenine
KW - Kynurenine 3-monooxygenase
KW - Microglia
KW - Neuroinflammation
KW - Pro-inflammatory cytokines
UR - http://www.scopus.com/inward/record.url?scp=84970028218&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84970028218&partnerID=8YFLogxK
U2 - 10.1186/s12974-016-0590-y
DO - 10.1186/s12974-016-0590-y
M3 - Article
C2 - 27233247
AN - SCOPUS:84970028218
SN - 1742-2094
VL - 13
JO - Journal of Neuroinflammation
JF - Journal of Neuroinflammation
IS - 1
M1 - 124
ER -