TY - JOUR
T1 - Ku70/80 modulates ATM and ATR signaling pathways in response to DNA double strand breaks
AU - Tomimatsu, Nozomi
AU - Tahimic, Candice G.T.
AU - Otsuki, Akihiro
AU - Burma, Sandeep
AU - Fukuhara, Akiko
AU - Sato, Kenzo
AU - Shiota, Goshi
AU - Oshimura, Mitsuo
AU - Chen, David J.
AU - Kurimasa, Akihiro
PY - 2007/4/6
Y1 - 2007/4/6
N2 - Double strand break (DSB) recognition is the first step in the DSB damage response and involves activation of ataxia telangiectasia-mutated(ATM) and phosphorylation of targets such as p53 to trigger cell cycle arrest, DNA repair, or apoptosis. It was reported that activation of ATM- and Rad3-related (ATR) kinase by DSBs also occurs in an ATM-dependent manner. On the other hand, Ku70/80 is known to participate at a later time point in the DSB response, recruiting DNA-PKcs to facilitate non-homologous end joining. Because Ku70/80 has a high affinity for broken DNA ends and is abundant in nuclei, we examined their possible involvement in other aspects of the DSB damage response, particularly in modulating the activity of ATM and other phosphatidylinositol (PI) 3-related kinases during DSB recognition. We thus analyzed p53 Ser18 phosphorylation in irradiated Ku-deficient cells and observed persistent phosphorylation in these cells relative to wild type cells. ATM or ATR inhibition revealed that this phosphorylation is mainly mediated by ATM-dependent ATR activity at 2 h post-ionizing radiation in wild type cells, whereas in Ku-deficient cells, this occurs mainly through direct ATM activity, with a secondary contribution from ATR via a novel ATM-independent mechanism. Using ATM/Ku70 double-null cell lines, which we generated, we confirmed that ATM-independent ATR activity contributed to persistent phosphorylation of p53Ser18 in Ku-deficient cells at 12 h post-ionizing radiation. In summary, we discovered a novel role for Ku70/80 in modulating ATM-dependent ATR activation during DSB damage response and demonstrated that these proteins confer a protective effect against ATM-independent ATR activation at later stages of the DSB damage response.
AB - Double strand break (DSB) recognition is the first step in the DSB damage response and involves activation of ataxia telangiectasia-mutated(ATM) and phosphorylation of targets such as p53 to trigger cell cycle arrest, DNA repair, or apoptosis. It was reported that activation of ATM- and Rad3-related (ATR) kinase by DSBs also occurs in an ATM-dependent manner. On the other hand, Ku70/80 is known to participate at a later time point in the DSB response, recruiting DNA-PKcs to facilitate non-homologous end joining. Because Ku70/80 has a high affinity for broken DNA ends and is abundant in nuclei, we examined their possible involvement in other aspects of the DSB damage response, particularly in modulating the activity of ATM and other phosphatidylinositol (PI) 3-related kinases during DSB recognition. We thus analyzed p53 Ser18 phosphorylation in irradiated Ku-deficient cells and observed persistent phosphorylation in these cells relative to wild type cells. ATM or ATR inhibition revealed that this phosphorylation is mainly mediated by ATM-dependent ATR activity at 2 h post-ionizing radiation in wild type cells, whereas in Ku-deficient cells, this occurs mainly through direct ATM activity, with a secondary contribution from ATR via a novel ATM-independent mechanism. Using ATM/Ku70 double-null cell lines, which we generated, we confirmed that ATM-independent ATR activity contributed to persistent phosphorylation of p53Ser18 in Ku-deficient cells at 12 h post-ionizing radiation. In summary, we discovered a novel role for Ku70/80 in modulating ATM-dependent ATR activation during DSB damage response and demonstrated that these proteins confer a protective effect against ATM-independent ATR activation at later stages of the DSB damage response.
UR - http://www.scopus.com/inward/record.url?scp=34249848319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34249848319&partnerID=8YFLogxK
U2 - 10.1074/jbc.M611880200
DO - 10.1074/jbc.M611880200
M3 - Article
C2 - 17272272
AN - SCOPUS:34249848319
SN - 0021-9258
VL - 282
SP - 10138
EP - 10145
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 14
ER -