Abstract
Pulmonary infection with the bacterium Francisella tularensis can lead to the serious and potentially fatal disease, tularemia, in humans. Due to the current lack of an approved tularemia vaccine for humans, research is focused on vaccine development utilizing appropriate animal models. The Fischer 344 rat has emerged as a model that reflects human susceptibility to F. tularensis infection, and thus is an attractive model for tularemia vaccine development. Intratracheal inoculation of the Fischer 344 rat with F. tularensis mimics pulmonary exposure in humans. The successful delivery into the rat trachea is critical for pulmonary delivery. A laryngoscope with illumination is used to properly intubate the tracheae of anesthetized rats; the correct placement within the trachea is determined by a simple device to detect breathing. Following intubation, the F. tularensis culture is delivered in a measured dose via syringe. This technique standardizes pulmonary delivery of F. tularensis within the rat trachea to evaluate vaccine efficacy.
Original language | English (US) |
---|---|
Article number | e56123 |
Journal | Journal of Visualized Experiments |
Volume | 2017 |
Issue number | 127 |
DOIs | |
State | Published - Sep 30 2017 |
Keywords
- Biothreat
- Francisella
- Immunology
- Intratracheal
- Issue 127
- Rat
- Tularemia
- Vaccine
ASJC Scopus subject areas
- Neuroscience(all)
- Chemical Engineering(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)