Intrapleural Impedance Sensor Real-Time Tracking of Pneumothorax in a Porcine Model of Air Leak

Daniel T. DeArmond, Nitin A. Das, Carlos S. Restrepo, Mitch A. Katona, Scott B. Johnson, Brian S. Hernandez, Joel E. Michalek

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

In patients with alveolar-to-pleural air leak due to recent surgery or trauma, clinicians tend to manage chest tubes with suction therapy. Nonsuction therapy is associated with shorter chest tube duration but also a higher risk of pneumothorax. We sought to develop an intrapleural electrical impedance sensor for continuous, real-time monitoring of pneumothorax development in a porcine model of air leak as a means of promoting nonsuction therapy. Using thoracoscopy, 2 chest tubes and the pleural impedance sensor were introduced into the pleural space of 3 pigs. Continuous air leak was introduced through 1 chest tube by carbon dioxide insufflation. The second chest tube was placed to suction then transitioned to no suction at increasingly higher air leaks until pneumothorax developed. Simultaneously, real-time impedance measurements were obtained from the pleural sensor. Fluoroscopy spot images were captured to verify the presence or absence of pneumothorax. Statistical Analysis Software was used throughout. With the chest tube on suction, a fully expanded lung was identified by a distinct pleural electrical impedance respiratory waveform. With transition of the chest tube to water seal, loss of contact of the sensor with the lung resulted in an immediate measurement of infinite electrical impedance. Pneumothorax resolution by restoring suction therapy was detected in real time by a return of the normal respiratory impedance waveform. Pleural electrical impedance monitoring detected pneumothorax development and resolution in real time. This simple technology has the potential to improve the safety and quality of chest tube management.

Original languageEnglish (US)
Pages (from-to)357-366
Number of pages10
JournalSeminars in thoracic and cardiovascular surgery
Volume32
Issue number2
DOIs
StatePublished - Jun 1 2020

Keywords

  • Chest tubes
  • Electrical impedance
  • Lung injury
  • Pneumothorax
  • Pulmonary surgical procedures

ASJC Scopus subject areas

  • Surgery
  • Pulmonary and Respiratory Medicine
  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Intrapleural Impedance Sensor Real-Time Tracking of Pneumothorax in a Porcine Model of Air Leak'. Together they form a unique fingerprint.

  • Cite this