Interaction of the N-Terminal Domain of the AMPA Receptor GluR4 Subunit with the Neuronal Pentraxin NP1 Mediates GluR4 Synaptic Recruitment

Gek Ming Sia, Jean Claude Béïque, Gavin Rumbaugh, Richard Cho, Paul F. Worley, Richard L. Huganir

Research output: Contribution to journalArticlepeer-review

159 Scopus citations

Abstract

Synaptogenesis requires recruitment of neurotransmitter receptors to developing postsynaptic specializations. We developed a coculture system reconstituting artificial synapses between neurons and nonneuronal cells to investigate the molecular components required for AMPA-receptor recruitment to synapses. With this system, we find that excitatory axons specifically express factors that recruit the AMPA receptor GluR4 subunit to sites of contact between axons and GluR4-transfected nonneuronal cells. Furthermore, the N-terminal domain (NTD) of GluR4 is necessary and sufficient for its recruitment to these artificial synapses and also for GluR4 recruitment to native synapses. Moreover, we show that axonally derived neuronal pentraxins NP1 and NPR are required for GluR4 recruitment to artificial and native synapses. RNAi knockdown and knockout of the neuronal pentraxins significantly decreases GluR4 targeting to synapses. Our results indicate that NP1 and NPR secreted from presynaptic neurons bind to the GluR4 NTD and are critical trans-synaptic factors for GluR4 recruitment to synapses.

Original languageEnglish (US)
Pages (from-to)87-102
Number of pages16
JournalNeuron
Volume55
Issue number1
DOIs
StatePublished - Jul 5 2007
Externally publishedYes

Keywords

  • CELLBIO
  • MOLNEURO
  • SIGNALING

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Interaction of the N-Terminal Domain of the AMPA Receptor GluR4 Subunit with the Neuronal Pentraxin NP1 Mediates GluR4 Synaptic Recruitment'. Together they form a unique fingerprint.

Cite this