Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation

Jorge Alex Pavon, Paul F. Fitzpatrick

Research output: Contribution to journalArticlepeer-review

41 Scopus citations


Phenylalanine hydroxylase (PheH) and tryptophan hydroxylase (TrpH) catalyze the aromatic hydroxylation of phenylalanine and tryptophan, forming tyrosine and 5-hydroxytryptophan, respectively. The reactions of PheH and TrpH have been investigated with [4-2H]-, [3,5-2H2]-, and 2H5-phenylalanine as substrates. All Dk cat values are normal with Δ117PheH, the catalytic core of rat phenylalanine hydroxylase, ranging from 1.12-1.41. In contrast, for Δ117PheH V379D, a mutant protein in which the stoichiometry between tetrahydropterin oxidation and amino acid hydroxylation is altered, the Dkcat value with [4-2H]-phenylalanine is 0.92 but is normal with [3,5-2H2]-phenylalanine. The ratio of tetrahydropterin oxidation to amino acid hydroxylation for Δ117PheH V379D shows a similar inverse isotope effect with [4-2H]-phenylalanine. Intramolecular isotope effects, determined from the deuterium contents of the tyrosine formed from [4-2H]-and [3,52H2]- phenylalanine, are identical for Δ117PheH and Δ117PheH V379D, suggesting that steps subsequent to oxygen addition are unaffected in the mutant protein. The inverse effects are consistent with the reaction of an activated ferryl-oxo species at the para position of the side chain of the amino acid to form a cationic intermediate. The normal effects on the Dk cat value for the wild-type enzyme are attributed to an isotope effect of 5.1 on the tautomerization of a dienone intermediate to tyrosine with a rate constant 6- to7-fold that for hydroxylation. In addition, there is a slight (∼34%) preference for the loss of the hydrogen originally at C4 of phenylalanine. With 2H5-indole-tryptophan as a substrate for Δ117PheH, the Dkcat value is 0.89, consistent with hydroxylation being rate-limiting in this case. When deuterated phenylalanines are used as substrates for TrpH, the Dkcat values are within error of those for Δ117PheH V379D. Overall, these results are consistent with the aromatic amino acid hydroxylases all sharing the same chemical mechanism, but with the isotope effect for hydroxylation by PheH being masked by tautomerization of an enedione intermediate to tyrosine.

Original languageEnglish (US)
Pages (from-to)11030-11037
Number of pages8
Issue number36
StatePublished - Sep 12 2006
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation'. Together they form a unique fingerprint.

Cite this