Inhibition of 1,25‐(OH)2D3‐ and 24,25‐(OH)2D3‐dependent stimulation of alkaline phosphatase activity by A23187 suggests a role for calcium in the mechanism of vitamin D regulation of chondrocyte cultures

Z. Schwartz, G. G. Langston, L. D. Swain, Barbara D. Boyan

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

This study used the ionophore, A23187, to examine the hypothesis that the regulation of alkaline phosphatase and phospholipase A2 activity by vitamin D3 metabolites in cartilage cells is mediated by changes in calcium influx. Confluent, fourth‐passage cultures of growth zone and resting zone chondrocytes from the costochondral cartilage of 125 g rats were incubated with 0.01‐10 μM A23187. Specific activities of alkaline phosphatase and phospholipase A2 were measured in the cell layer and in isolated plasma membranes and matrix vesicles. There was an inhibition of alkaline phosphatase specific activity at 0.1 μM A23187 in resting zone cells and at 0.1 and 1 μM in growth zone chondrocytes. At these concentrations of ionophore, the 45Ca content of the chondrocytes was shown to increase. Both the plasma membrane and matrix vesicle enzyme activities were inhibited. There was no effect of ionophore on matrix vesicle or plasma membrane phospholipase A2 in either cell type. In contrast, alkaline phosphatase activity is stimulated when growth zone chondrocytes are incubated with 1,25‐(OH)2D3 and in resting zone cells incubated with 24,25‐(OH)2D3. Phospholipase A2 activity is differentially affected depending on the metabolite used and the cell examined. Addition of ionophore to cultures preincubated with 1,25‐(OH)2D3 or 24,25‐(OH)2D3 blocked the stimulation of alkaline phosphatase by the vitamin D3 metabolites in a dose‐dependent manner. The effects of ionophore were not due to a direct effect on the membrane enzymes since enzyme activity in isolated membranes incubated with A23187 in vitro was unaffected. These results suggest a role for calcium in the action of vitamin D metabolites on chondrocyte membrane enzyme activity but indicate that mechanisms other than merely Ca2+ influx per se are involved.

Original languageEnglish (US)
Pages (from-to)709-718
Number of pages10
JournalJournal of Bone and Mineral Research
Volume6
Issue number7
DOIs
StatePublished - Jul 1991

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Orthopedics and Sports Medicine

Fingerprint Dive into the research topics of 'Inhibition of 1,25‐(OH)<sub>2</sub>D<sub>3</sub>‐ and 24,25‐(OH)<sub>2</sub>D<sub>3</sub>‐dependent stimulation of alkaline phosphatase activity by A23187 suggests a role for calcium in the mechanism of vitamin D regulation of chondrocyte cultures'. Together they form a unique fingerprint.

Cite this