Abstract
Transforming growth factor-beta (TGF-beta) is implicated in a variety of kidney diseases where it promotes extracellular matrix (ECM) deposition and pro-inflammatory events, but it also stabilizes and attenuates tissue injury through the activation of cytoprotective proteins, including heme oxygenase-1 (HO-1). HO-1 catalyzes the conversion of heme into carbon monoxide (CO), iron, and biliverdin, which is subsequently converted to bilirubin. The beneficial effects of HO-1 induction include decreasing pro-oxidants (heme), increasing anti-oxidants (biliverdin and bilirubin), and producing a vasodilator with anti-apoptotic and anti-inflammatory properties (CO). The reaction products of HO-1 may also have antifibrogenic properties. The purpose of this study is to explore the effects of HO-1 expression and its reaction products on fibronectin, an ECM protein, in the kidney. The results demonstrate that kidneys of HO-1 knockout mice express significantly more fibronectin protein as compared to heterozygote mice. A potent inducer of HO-1, hemin, significantly decreases fibronectin protein with a concomitant increase in HO-1 protein. Cells expressing HO-1, via TGF-beta1 induction, have reduced fibronectin expression. Bilirubin, a product of the heme oxygenase reaction, attenuates TGF-beta1-mediated increases in fibronectin expression. These results indicate that HO-1 induction and activity may modulate the production of ECM components and suggest a potential role for TGF-beta-mediated HO-1 induction in attenuating renal fibrosis.
Original language | English (US) |
---|---|
Pages (from-to) | 357-362 |
Number of pages | 6 |
Journal | Cellular and Molecular Biology |
Volume | 51 |
Issue number | 4 |
DOIs | |
State | Published - Sep 30 2005 |
Externally published | Yes |
Keywords
- Bilirubin
- Extracellular matrix
- Fibronectin
- Heme oxygenase-1
- Transforming growth factor-beta
ASJC Scopus subject areas
- Molecular Biology
- Biochemistry
- Cell Biology