Increased Presynaptic Dopamine Synthesis Capacity Is Associated With Aberrant Dopamine Neuron Activity in the Methylazoxymethanol Acetate Rodent Model Used to Study Schizophrenia-Related Pathologies

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Aberrant dopamine system function is thought to contribute to the positive symptoms of schizophrenia. Clinical imaging studies have demonstrated that the largest dopamine abnormality in patients appears to be an increase in presynaptic dopamine activity. Indeed, studies utilizing [18F]DOPA positive emission tomography reliably report increases in presynaptic dopamine bioavailability in patients and may serve as a biomarker for treatment response. The mechanisms contributing to this increased presynaptic activity in human patients is not yet fully understood, which necessitates the use of preclinical models. Dopamine system function can be directly examined in experimental animals using in vivo electrophysiology. One consistent finding from preclinical studies in rodent models used to study schizophrenia-like neuropathology is a 2-fold increase in the number of spontaneously active dopamine neurons in the ventral tegmental area (VTA), termed population activity. We posit that increased striatal dopamine synthesis capacity is attributed to an augmented VTA dopamine neuron population activity. Here, we directly test this hypothesis using [3H]DOPA ex vivo autoradiography, to quantify striatal dopamine synthesis capacity, in the methylazoxymethanol acetate (MAM) model, a validated rodent model displaying neurophysiological and behavioral alterations consistent with schizophrenia-like symptomatologies. Consistent with human imaging studies, dopamine synthesis capacity was significantly increased in dorsal and ventral striatal subregionis, including the caudate putamen and nucleus accumbens, of MAM-treated rats and associated with specific increases in dopamine neuron population activity. Taken together, these data provide a link between mechanistic studies in rodent models and clinical studies of increased presynaptic dopamine function in human subjects.

Original languageEnglish (US)
Article numbersgac067
JournalSchizophrenia Bulletin Open
Volume3
Issue number1
DOIs
StatePublished - Jan 1 2022

Keywords

  • MAM
  • autoradiography
  • dopamine
  • schizophrenia
  • ventral tegmental area

ASJC Scopus subject areas

  • Psychiatry and Mental health

Fingerprint

Dive into the research topics of 'Increased Presynaptic Dopamine Synthesis Capacity Is Associated With Aberrant Dopamine Neuron Activity in the Methylazoxymethanol Acetate Rodent Model Used to Study Schizophrenia-Related Pathologies'. Together they form a unique fingerprint.

Cite this