Increased expression of cardiac IL-17 after burn

Richard F. Oppeltz, Qiong Zhang, Meenakshi Rani, Jennifer R. Sasaki, Martin G. Schwacha

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Background. Cardiac dysfunction is a common complication associated with major burns. While recent findings have linked the Th-17 T-cell response to the development of autoimmune myocarditis, the role of IL-17 and the Th-17 T-cell response in the development of post-burn cardiac dysfunction remains unknown. Methods. Male C57BL/6 mice were subjected to a major burn (3rd degree, 25% TBSA) or sham treatment. Three hours after injury plasma and tissue (i.e., heart, lung, liver, small intestine) samples were collected and analyzed for the expression of Th-17 cytokine (i.e., IL-6, IL-17, IL-22, IL-23, TGF-) levels by ELISA. Results. Cardiac tissue levels of the Th-17 cytokines, IL-6, IL-17 and IL-22 were significantly elevated at 3 hrs after burn as compared to sham levels. IL-17 was analyzed 1, 3 and 7 days after burn and showed a return to baseline levels and without a difference in the burn group. Burn-induced alterations in the level of these cytokines in plasma or other tissues were not evident. The cardiac Th-17 cytokine response after burn injury was specific, as cardiac levels of Th-1 (IFN-) and Th-2 (IL-10) cytokines were not significantly affected after injury. The cardiac Th-17 response correlated with a significant increase in Troponin levels at 3 hr. after burn. Conclusion. These findings indicate that early after burn, cardiac tissue is associated with significantly elevated levels of Th-17 cytokines. The early Th-17 response after burn appears to be specific for cardiac tissue and may promote myocardial inflammation and dysfunction associated with this form of trauma.

Original languageEnglish (US)
Article number38
JournalJournal of Inflammation
StatePublished - 2010

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Cell Biology


Dive into the research topics of 'Increased expression of cardiac IL-17 after burn'. Together they form a unique fingerprint.

Cite this