Increased collagen content in insulin-resistant skeletal muscle

Rachele Berria, Lishan Wang, Dawn K. Richardson, Jean Finlayson, Renata Belfort, Thongchai Pratipanawatr, Elena A. De Filippis, Sangeeta Kashyap, Lawrence J. Mandarino

Research output: Contribution to journalArticlepeer-review

112 Scopus citations


Oversupply and underutilization of lipid fuels are widely recognized to be strongly associated with insulin resistance in skeletal muscle. Recent attention has focused on the mechanisms underlying this effect, and defects in mitochondrial function have emerged as a potential player in this scheme. Because evidence indicates that lipid oversupply can produce abnormalities in extracellular matrix composition and matrix changes can affect the function of mitochondria, the present study was undertaken to determine whether muscle from insulin-resistant, nondiabetic obese subjects and patients with type 2 diabetes mellitus had increased collagen content. Compared with lean control subjects, obese and type 2 diabetic subjects had reduced muscle glucose uptake (P < 0.01) and decreased insulin stimulation of tyrosine phosphorylation of insulin receptor substrate-1 and its ability to associate with phosphatidylinositol 3-kinase (P < 0.01 and P < 0.05). Because it was assayed by total hydroxyproline content, collagen abundance was increased in muscle from not only type 2 diabetic patients but also nondiabetic obese subjects (0.26 ± 0.05, 0.57 ± 0.18, and 0.67 ± 0.20 μg/mg muscle wet wt, lean controls, obese nondiabetics, and type 2 diabetics, respectively), indicating that hyperglycemia itself could not be responsible for this effect. Immunofluorescence staining of muscle biopsies indicated that there was increased abundance of types I and III collagen. We conclude that changes in the composition of the extracellular matrix are a general characteristic of insulin-resistant muscle.

Original languageEnglish (US)
Pages (from-to)E560-E565
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Issue number3
StatePublished - Mar 2006
Externally publishedYes


  • Extracellular matrix
  • Insulin resistance
  • Type 2 diabetes mellitus

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Increased collagen content in insulin-resistant skeletal muscle'. Together they form a unique fingerprint.

Cite this