TY - JOUR
T1 - In vivo suicide gene therapy model using a newly discovered prostate-specific membrane antigen promoter/enhancer
T2 - A potential alternative approach to androgen deprivation therapy
AU - Uchida, Atsushi
AU - O'Keefe, Denise S.
AU - Bacich, Dean J.
AU - Molloy, Peter L.
AU - Heston, Warren D.W.
PY - 2001
Y1 - 2001
N2 - Prostate-specific membrane antigen (PSMA) is a type-2 membrane protein expressed in the prostate, and it is highly expressed in metastatic or poorly differentiated adenocarcinomas. Moreover, PSMA expression is upregulated by androgen deprivation. These advantages make PSMA a useful target for prostate cancer therapy, especially in combination with conventional hormonal treatment. We recently reported that a prostate-specific enhancer is present in the third intron of the PSMA gene. In this study, we have further analyzed the activity of PSMA promoter/enhancer in prostate cancer cells and cells of other tissue origins (breast cancer MCF-7, lung cancer H157, and colorectal cancer HCT8 cells), and we have examined whether this construct could be used for efficient expression of the suicide gene, cytosine deaminase (CD), in vivo. The PSMA promoter/enhancer expressed the luciferase reporter gene in the prostate cancer lines LNCaP and C4-2, with 8- to 20-fold higher expression than the simian virus 40 promoter/enhancer, although it was inactive in the other cell lines. This construct efficiently drove the suicide gene CD, sensitizing C4-2 cells to 5-fluorocytosine (5-FC) with the inhibitory concentration (IC50) <300 μmol/L in vitro. Athymic male nude mice bearing the transfected C4-2 cells were treated with intraperitoneal injections of either 5-FC (600 mg/kg) twice a day or saline solution for 3 weeks. C4-2 cell tumors were eliminated by 5-FC when they were expressing our therapeutic construct carrying CD under the regulatory control of the PSMA promoter/enhancer. Our results show the in vivo utility of the PSMA promoter/enhancer in a gene therapy situation targeting prostate cancer.
AB - Prostate-specific membrane antigen (PSMA) is a type-2 membrane protein expressed in the prostate, and it is highly expressed in metastatic or poorly differentiated adenocarcinomas. Moreover, PSMA expression is upregulated by androgen deprivation. These advantages make PSMA a useful target for prostate cancer therapy, especially in combination with conventional hormonal treatment. We recently reported that a prostate-specific enhancer is present in the third intron of the PSMA gene. In this study, we have further analyzed the activity of PSMA promoter/enhancer in prostate cancer cells and cells of other tissue origins (breast cancer MCF-7, lung cancer H157, and colorectal cancer HCT8 cells), and we have examined whether this construct could be used for efficient expression of the suicide gene, cytosine deaminase (CD), in vivo. The PSMA promoter/enhancer expressed the luciferase reporter gene in the prostate cancer lines LNCaP and C4-2, with 8- to 20-fold higher expression than the simian virus 40 promoter/enhancer, although it was inactive in the other cell lines. This construct efficiently drove the suicide gene CD, sensitizing C4-2 cells to 5-fluorocytosine (5-FC) with the inhibitory concentration (IC50) <300 μmol/L in vitro. Athymic male nude mice bearing the transfected C4-2 cells were treated with intraperitoneal injections of either 5-FC (600 mg/kg) twice a day or saline solution for 3 weeks. C4-2 cell tumors were eliminated by 5-FC when they were expressing our therapeutic construct carrying CD under the regulatory control of the PSMA promoter/enhancer. Our results show the in vivo utility of the PSMA promoter/enhancer in a gene therapy situation targeting prostate cancer.
UR - http://www.scopus.com/inward/record.url?scp=0034898946&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034898946&partnerID=8YFLogxK
U2 - 10.1016/S0090-4295(01)01256-0
DO - 10.1016/S0090-4295(01)01256-0
M3 - Article
C2 - 11502468
AN - SCOPUS:0034898946
SN - 0090-4295
VL - 58
SP - 132
EP - 139
JO - Urology
JF - Urology
IS - 2 SUPPL. 1
ER -