Abstract
Background:Magnetic resonance imaging (MRI) is emerging as a robust, noninvasive method for detecting and characterizing prostate cancer (PCa), but limitations remain in its ability to distinguish cancerous from non-cancerous tissue. We evaluated the performance of a novel MRI technique, restriction spectrum imaging (RSI-MRI), to quantitatively detect and grade PCa compared with current standard-of-care MRI.Methods:In a retrospective evaluation of 33 patients with biopsy-proven PCa who underwent RSI-MRI and standard MRI before radical prostatectomy, receiver-operating characteristic (ROC) curves were performed for RSI-MRI and each quantitative MRI term, with area under the ROC curve (AUC) used to compare each term's ability to differentiate between PCa and normal prostate. Spearman rank-order correlations were performed to assess each term's ability to predict PCa grade in the radical prostatectomy specimens.Results:RSI-MRI demonstrated superior differentiation of PCa from normal tissue, with AUC of 0.94 and 0.85 for RSI-MRI and conventional diffusion MRI, respectively (P=0.04). RSI-MRI also demonstrated superior performance in predicting PCa aggressiveness, with Spearman rank-order correlation coefficients of 0.53 (P=0.002) and -0.42 (P=0.01) for RSI-MRI and conventional diffusion MRI, respectively, with tumor grade.Conclusions:RSI-MRI significantly improves upon current noninvasive PCa imaging and may potentially enhance its diagnosis and characterization.
Original language | English (US) |
---|---|
Pages (from-to) | 168-173 |
Number of pages | 6 |
Journal | Prostate Cancer and Prostatic Diseases |
Volume | 19 |
Issue number | 2 |
DOIs | |
State | Published - Jun 1 2016 |
ASJC Scopus subject areas
- Urology
- Oncology
- Cancer Research