TY - JOUR
T1 - In vivo discharge properties of hypothalamic paraventricular nucleus neurons with axonal projections to the rostral ventrolateral medulla
AU - Chen, Qing Hui
AU - Toney, Glenn M.
PY - 2010/1
Y1 - 2010/1
N2 - The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) are key components of a neural network that generates and regulates sympathetic nerve activity (SNA). Although each region has been extensively studied, little is presently known about the in vivo discharge properties of individual PVN neurons that directly innervate the RVLM. Here extracellular recording was performed in anesthetized rats, and antidromic stimulation was used to identify single PVN neurons with axonal projections to the RVLM (n = 94). Neurons were divided into two groups that had either unbranched axons terminating in the RVLM (i.e., PVN-RVLM neurons, n = 65) or collateralized axons targeting both the RVLM and spinal cord [i.e., PVN-RVLM/intermediolateral cell column (IML) neurons, n = 29]. Many PVNRVLM (32/65, 49%) and PVN-RVLM/IML (17/29, 59%) neurons were spontaneously active. The average firing frequency was not different across groups. Spike-triggered averaging revealed that spontaneous discharge of most neurons was temporally correlated with renal SNA (PVN-RVLM: 12/21, 57%; PVN-RVLM/IML: 6/9, 67%). Time histograms triggered by the electrocardiogram (ECG) R-wave indicated that discharge of most cells was also cardiac rhythmic (PVN-RVLM: 25/32, 78%; PVN-RVLM/IML: 10/17, 59%). Raising and lowering arterial blood pressure to increase and decrease arterial baroreceptor input caused a corresponding decrease and increase in firing frequency among cells of both groups (PVN-RVLM: 9/13, 69%; PVNRVLM/IML: 4/4, 100%). These results indicate that PVN-RVLM and PVN-RVLM/IML neurons are both capable of contributing to basal sympathetic activity and its baroreflex modulation.
AB - The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) are key components of a neural network that generates and regulates sympathetic nerve activity (SNA). Although each region has been extensively studied, little is presently known about the in vivo discharge properties of individual PVN neurons that directly innervate the RVLM. Here extracellular recording was performed in anesthetized rats, and antidromic stimulation was used to identify single PVN neurons with axonal projections to the RVLM (n = 94). Neurons were divided into two groups that had either unbranched axons terminating in the RVLM (i.e., PVN-RVLM neurons, n = 65) or collateralized axons targeting both the RVLM and spinal cord [i.e., PVN-RVLM/intermediolateral cell column (IML) neurons, n = 29]. Many PVNRVLM (32/65, 49%) and PVN-RVLM/IML (17/29, 59%) neurons were spontaneously active. The average firing frequency was not different across groups. Spike-triggered averaging revealed that spontaneous discharge of most neurons was temporally correlated with renal SNA (PVN-RVLM: 12/21, 57%; PVN-RVLM/IML: 6/9, 67%). Time histograms triggered by the electrocardiogram (ECG) R-wave indicated that discharge of most cells was also cardiac rhythmic (PVN-RVLM: 25/32, 78%; PVN-RVLM/IML: 10/17, 59%). Raising and lowering arterial blood pressure to increase and decrease arterial baroreceptor input caused a corresponding decrease and increase in firing frequency among cells of both groups (PVN-RVLM: 9/13, 69%; PVNRVLM/IML: 4/4, 100%). These results indicate that PVN-RVLM and PVN-RVLM/IML neurons are both capable of contributing to basal sympathetic activity and its baroreflex modulation.
UR - http://www.scopus.com/inward/record.url?scp=74049089320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=74049089320&partnerID=8YFLogxK
U2 - 10.1152/jn.00094.2009
DO - 10.1152/jn.00094.2009
M3 - Article
C2 - 19889858
AN - SCOPUS:74049089320
SN - 0022-3077
VL - 103
SP - 4
EP - 15
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 1
ER -