Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants

Rolando A. Gittens, Rene Olivares-Navarrete, Zvi Schwartz, Barbara D. Boyan

Research output: Contribution to journalReview articlepeer-review

212 Scopus citations


The use of spinal implants for spine fusion has been steadily increasing to avoid the risks of complications and donor site morbidity involved when using autologous bone. A variety of fusion cages are clinically available, with different shapes and chemical compositions. However, detailed information about their surface properties and the effects of such properties on osteogenesis is lacking in the literature. Here we evaluate the role of surface properties for spinal implant applications, covering some of the key biological processes that occur around an implant and focusing on the role of surface properties, specifically the surface structure, on osseointegration, drawing examples from other implantology fields when required. Our findings revealed that surface properties such as microroughness and nanostructures can directly affect early cell behavior and long-term osseointegration. Microroughness has been well established in the literature to have a beneficial effect on osseointegration of implants. In the case of the role of nanostructures, the number of reports is increasing and most studies reveal a positive effect from the nanostructures alone and a synergistic effect when combined with microrough surfaces. Long-term clinical results are nevertheless necessary to establish the full implications of surface nanomodifications.

Original languageEnglish (US)
Pages (from-to)3363-3371
Number of pages9
JournalActa Biomaterialia
Issue number8
StatePublished - Aug 2014


  • Bone
  • Nanostructures
  • Spine fusion
  • Titanium surface properties
  • Topography roughness

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology


Dive into the research topics of 'Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants'. Together they form a unique fingerprint.

Cite this