TY - JOUR
T1 - Immediate dental implant stabilization in a canine model using a novel mineral-organic adhesive
T2 - 4-Month results
AU - Cochran, David L.
AU - Jones, Archie
AU - Sugita, Ryushiro
AU - Brown, Michael C.
AU - Guda, Teja
AU - Prasad, Hari
AU - Ong, Joo L.
AU - Pollack, Alan
AU - Kay, George W.
N1 - Publisher Copyright:
© 2020 by Quintessence Publishing Co Inc.
PY - 2020
Y1 - 2020
N2 - Purpose: This study evaluated a novel injectable, self-setting, osteoconductive, resorbable adhesive that provides immediate implant stabilization. Materials and Methods: Twenty-six large canines had the mandibular second through fourth premolars and the first molar removed bilaterally. After 3 months, oversized osteotomies were prepared with only the apical 2 mm of the implant engaging native bone. One site had a novel resorbable, self-setting, mineral-organic adhesive (TN-SM) placed around the implant, a second site received bone graft, and a third site received only blood clot. Removal torque, standardized radiography, and histology were used to evaluate implant stability and tissue contact after 24 hours, 10 days, and 4 months. Results: Mean removal torque values after 24 hours were 1.4, 1.3, and 22.2 Ncm for the control, bone graft, and mineral-organic adhesive, respectively. After 10 days, these values were 5.7, 6.2, and 45.7 Ncm and at 4 months increased to 88.7, 77.8, and 104.7 Ncm, respectively. Clinical, radiographic, and histologic evaluations showed a lack of inflammatory reaction. Control defects were initially radiolucent in the coronal area; grafted sites revealed particles in the gap, with both conditions gradually filling with bone over time. At 10 days, histologic evaluation demonstrated excellent biocompatibility and intimate contact of mineral-organic adhesive to both the implant and bone, providing an osseointegration-like bond; control sites revealed no bone contact in the defect area, while the bone-grafted sites revealed unattached graft particles. At 4 months, much of the mineral-organic adhesive was replaced with bone; the control and grafted sites had some bone fill, and many of the defects demonstrated no bone-to-implant contact and were filled with soft tissue or isolated graft particles. Conclusion: The mineral-organic adhesive provides immediate (osseointegration-like) and continued implant stabilization over 4 months in sites lacking primary stability. Experimental sites demonstrated maintenance of crestal bone levels adjacent to the mineral-organic adhesive and soft tissue exclusion without the use of membranes in this canine model. These results demonstrate that this novel mineral-organic adhesive can enable implant osseointegration in a site where insufficient native bone exists to allow immediate implant placement.
AB - Purpose: This study evaluated a novel injectable, self-setting, osteoconductive, resorbable adhesive that provides immediate implant stabilization. Materials and Methods: Twenty-six large canines had the mandibular second through fourth premolars and the first molar removed bilaterally. After 3 months, oversized osteotomies were prepared with only the apical 2 mm of the implant engaging native bone. One site had a novel resorbable, self-setting, mineral-organic adhesive (TN-SM) placed around the implant, a second site received bone graft, and a third site received only blood clot. Removal torque, standardized radiography, and histology were used to evaluate implant stability and tissue contact after 24 hours, 10 days, and 4 months. Results: Mean removal torque values after 24 hours were 1.4, 1.3, and 22.2 Ncm for the control, bone graft, and mineral-organic adhesive, respectively. After 10 days, these values were 5.7, 6.2, and 45.7 Ncm and at 4 months increased to 88.7, 77.8, and 104.7 Ncm, respectively. Clinical, radiographic, and histologic evaluations showed a lack of inflammatory reaction. Control defects were initially radiolucent in the coronal area; grafted sites revealed particles in the gap, with both conditions gradually filling with bone over time. At 10 days, histologic evaluation demonstrated excellent biocompatibility and intimate contact of mineral-organic adhesive to both the implant and bone, providing an osseointegration-like bond; control sites revealed no bone contact in the defect area, while the bone-grafted sites revealed unattached graft particles. At 4 months, much of the mineral-organic adhesive was replaced with bone; the control and grafted sites had some bone fill, and many of the defects demonstrated no bone-to-implant contact and were filled with soft tissue or isolated graft particles. Conclusion: The mineral-organic adhesive provides immediate (osseointegration-like) and continued implant stabilization over 4 months in sites lacking primary stability. Experimental sites demonstrated maintenance of crestal bone levels adjacent to the mineral-organic adhesive and soft tissue exclusion without the use of membranes in this canine model. These results demonstrate that this novel mineral-organic adhesive can enable implant osseointegration in a site where insufficient native bone exists to allow immediate implant placement.
KW - Bone adhesive
KW - Calcium phosphate
KW - Dental implants
KW - Integration
KW - Phosphoserine
KW - Resorbable
KW - Stability
UR - http://www.scopus.com/inward/record.url?scp=85077765202&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077765202&partnerID=8YFLogxK
U2 - 10.11607/jomi.7891
DO - 10.11607/jomi.7891
M3 - Article
C2 - 31923288
AN - SCOPUS:85077765202
SN - 0882-2786
VL - 35
SP - 39
EP - 51
JO - International Journal of Oral and Maxillofacial Implants
JF - International Journal of Oral and Maxillofacial Implants
IS - 1
ER -